| Solve the equation $2\cos\theta = 7$ - | cos U | [4 | |--|------------------|--------| ••••• | | | | | | | | | | | | •••••• | •••••• | a) | Describe fully the two single transformations that have been combined to give the resulting transformation. | |-----|--| `he | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. | | | | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | | | point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.
State the coordinates of the corresponding point on the original curve $y = f(x)$. | **3** The function f is defined as follows: $$f(x) = \frac{x+3}{x-1}$$ for $x > 1$. | (a) | Find the value of $ff(5)$. | [2] | |------------|--------------------------------------|------------| •••••• | | | | | | | | •••••••••• | | | | | | | | •••••• | | | | | | | | •••••• | | | | | | (b) | Find an expression for $f^{-1}(x)$. | [3] | | () | r (v) | [- J | | | | | | | | •••••• | | | | | | | | •••••••••• | | | | | | | | •••••• | | | | | | | | •••••••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | •••••• | | | | | | | | | | | | ا وين: لت | | | | /00\ | | Find the e | quation of th | ne curve. | | | | | | | [4] | |------------|---------------|-----------|-------|---------|---|--------|--------|--------|--------| | | | | ••••• | | | | | ••••• | •••••• | ••••• | •••••• | ••••• | • | ••••••• | •••••• | •••••• | ••••• | •••••• | | •••••• | | ••••• | ••••• | ••••••• | | •••••• | ••••• | ••••• | ••••• | | •••••• | ••••• | ••••• | ••••• | | | ••••• | ••••• | ••••• | , | •••••• | | ••••• | ••••• | | | •••••• | | | | | | | | ••••• | | | ••••• | ••••• | •••••• | •••••• | •••••• | ••••• | ••••••• | • | ••••• | •••••• | ••••• | ••••• | | •••••• | | ••••• | ••••• | •••••• | | ••••• | ••••• | ••••• | | | ••••• | | ••••• | ••••• | | | ••••• | ••••• | ••••• | •••• | | | | | | | | | | | | | | •••••• | •••••• | •••••• | ••••• | ••••••• | ••••••• | •••••• | ••••• | •••••• | ••••• | | ••••• | ••••• | | ••••• | | | •••••• | | ••••• | | | ••••• | | ••••• | ••••• | | | ••••• | •••••• | ••••• | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | | (a) | Find the exact value of x . | [3 | |-----|--|-------| ra | | (b) | Hence find the exact sum of the first 25 terms of the progression. | [3 | ••••• | | | | | | | | | | Find the tenth term, giving your answer in exact form. | [5 | |--|-----------| [<u></u> | | | | 7 In the diagram the lengths of AB and AC are both 15 cm. The point P is the foot of the perpendicular from C to AB. The length CP = 9 cm. An arc of a circle with centre B passes through C and meets AB at Q. | (a) | Show that angle $ABC = 1.25$ radians, correct to 3 significant figures. | [2] | |-----|---|------| | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | ••••• | •••••• | ••••• | •••••• | ••••• | •••••• | | |---|---------|--------|--------|--------|---|--------|---|-------| • | •••••• | •••••• | •••••• | •••••• | • | •••••• | ••••••• | ••••• | | | | | ••••• | | | | | ••••• | ••••• | ••••••• | ••••• | ••••• | ••••• | • | ••••• | • | ••••• | | | | | ••••• | ••••• | ••••• | | | • | • | | •••••• | •••••• | ••••• | | ••••• | • | ••••• | ••••• | ••••• | | ••••• | •••••• | ••••• | • | | ••••• | ••••• | ••••• | • | | • | ••••• | | | | | | ••••• | • | | ••••• | •••••• | ••••• | | | • | ••••• | | • | | | | | | | • | | | | | | | | | | | | | | | | • | • | | | • | | | • | | ••••• | ••••• | ••••• | • | ••••• | ••••• | 1 | Find the possible values of a . | [4 | |---|-----------------------------------|----| | | | | | • | | | | • | Find the values of k and a . | [4 | |----------------------------------|---------| TT 35-2 | | | 60 | |) I | Find the rate at which the radius of the mound is increasing at the instant when the radius is 5.5 | |-----|--| | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | | • | | | • | | | • | | | | | | • | | | • | | | • | | | • | | | • | | | • | | | • | | | [3 | |-----------| |
 | | | |
 | | | |
••••• | |
 | | | |
 | | | |
••••• | |
 | | | | | | | | •••••• | |
 | | | |
 | | | | •••••• | |
 | | | |
 | | | | | |
 | | | |
 | |
 | | | |
 | | | |
••••• | |
 | | | |
 | | | | | | | | | 10 The function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for x > 0. | (a) | Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k . | [3] | |-----|--|-------| | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | ••••• | ••••• | ••••• | •••••• | ••••• | ••••• | |----------------------|------------------|-------------------|---|-------------|---| | | | | | ••••• | ••••• | | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | ••••• | | | | | | | | | ••••• | ••••• | ••••• | | ••••• | ••••• | ••••• | | | | | | | | | | •••••• | ••••• | ••••• | • | | • | ••••• | | | | | | | Given that this is t | he only stationa | ry point of the o | curve, find the r | range of f. | | | | he only stationa | 11 The diagram shows the line $x = \frac{5}{2}$, part of the curve $y = \frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}$ and the normal to the curve at the point $A\left(3, \frac{6}{5}\right)$. | •• | | |----|--| •• | ••••• | |--------| | ••••• | | | | ••••• | | | | | | | | | |
 | | | | | |
 | | | | | |
 | | | | •••••• | |
 | | ••••• | |
 | | | | | | | |
 | | | | 1964 | | | **12** The diagram shows the circle with equation $x^2 + y^2 - 6x + 4y - 27 = 0$ and the tangent to the circle at the point P(5, 4). (a) The tangent to the circle at P meets the x-axis at A and the y-axis at B. | Find the area of triangle OAB , where O is the origin. | [5] | |--|---| | | · • • • • • • • • • • • • • • • • • • • | | | · • • • • • • | | | | | | · • • • • • • • • • • • • • • • • • • • | | | · • • • • • • • • • • • • • • • • • • • | | | | | | · • • • • • • • • • • • • • • • • • • • | | | , | | | , | | | | | | | | | | | | | | Find the exact area of triangle PQR . | | | |---|--|-------| | | | [3] | | ••• | | ••••• | ••• | | ••••• | | ••• | | ••••• | | ••• | | ••••• | | ••• | | ••••• | | ••• | | | | ••• | | | | | | | | | | | | | | •••• | | | | | | ••• | | ••••• | | ••• | | ••••• | | ••• | | ••••• | | ••• | | ••••• | | | | | | | | | | | | | | | | | | ••• | | | | ••• | | |