| (a) | Expand $\left(1 - \frac{1}{2x}\right)^2$. | | |-----|--|----------------| | | | | | (b) | Find the first four terms in the expansion, in ascending powers of x , of $(1 + 2x)$ | ⁶ . | | (6) | That the first rour terms in the expansion, in ascending powers of x, or (1 + 2x) | | | | | | | | | | | | | | | (a) | Hence find the coefficient of x in the expansion of $\left(1 - \frac{1}{x}\right)^2 (1 + 2x)^6$ | | | (C) | Hence find the coefficient of x in the expansion of $\left(1 - \frac{1}{2x}\right)^2 (1 + 2x)^6$. | | | | | | | | | | | | | | | [5] | |-------| ••••• | | ••••• | | ••••• | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | rage 3 of 19 | 9709_w21_qp_: | |--|---|---------------| | Solve, by factorising, the equation | 1 | | | 6 cos | $\theta \tan \theta - 3\cos \theta + 4\tan \theta - 2 = 0,$ | | | for $0^{\circ} \le \theta \le 180^{\circ}$. | | [4 | [4 | Find the value of a. | a) | |----|---|------------| he k th term of the arithmetic progression is zero. | The A | | [2 | Find the value of k . | b) | 5 The diagram shows part of the graph of $y = a \cos(bx) + c$. | (a) | Find the values of the positive integers a , b and c . | [3] | |-----|--|-------| | | | ••••• | | | | ••••• | | | | | | | | | | | | ••••• | | | | | (b) For these values of a, b and c, use the given diagram to determine the number of solutions in the interval $0 \le x \le 2\pi$ for each of the following equations. (i) $$a\cos(bx) + c = \frac{6}{\pi}x$$ [1] (ii) $$a\cos(bx) + c = 6 - \frac{6}{\pi}x$$ [1] The diagram shows a metal plate ABC in which the sides are the straight line AB and the arcs AC and BC. The line AB has length 6 cm. The arc AC is part of a circle with centre B and radius 6 cm, and the arc BC is part of a circle with centre A and radius 6 cm. | Find the perimeter of the plate, giving your answer in terms of π . | [3 | |---|----| •••••• | |-----------| | | | | | | | ••••• | |
 | | | | | | | |
••••• | |
 | |
 | | | | ••••• | | | |
 | | | | ••••• | |
 | | | | | | | | ••••• | | | |
 | | | | | | | | | | (a) | Find an equation of the circle. | [2 | |-----|---|--------| | | | | | | | | | | | ••••• | •••••• | •••••• | | | | | | | | ••••• | | | | | | | | | | | | | | Γhe | where $y = 5x - 10$ intersects the circle at A and B . | | | | | | | | where $y = 5x - 10$ intersects the circle at A and B . Find the exact length of the chord AB . | [7 | | | | [7 | | | | [7 | | | | [7 | | | Find the exact length of the chord <i>AB</i> . | [7 | | | | [7 | | | Find the exact length of the chord <i>AB</i> . | [7 | | | Find the exact length of the chord <i>AB</i> . | [7 | | | Find the exact length of the chord <i>AB</i> . | [7 | | | Find the exact length of the chord <i>AB</i> . | [7 | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | | | Find the exact length of the chord <i>AB</i> . | | |
 | |------| |
 | | | (OO) | | | Express $-3x^2 + 12x + 2$ in the form $-3(x - a)^2 + b$, where a and b are constant | | |-----|---|--------| | | | | | | | | | | | | | | | •••••• | The | one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$. | | | | one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$.
State the largest possible value of the constant k . | | | | | | | | | [| | | |] | | | | [| | (b) | | [| | (b) | State the largest possible value of the constant <i>k</i> . | | | (b) | State the largest possible value of the constant k . now given that $k = -1$. | | | (b) | State the largest possible value of the constant k . now given that $k = -1$. | | | (b) | State the largest possible value of the constant k . now given that $k = -1$. | | | | [3 | |--|---------| result of translating the graph of $y = f(x)$ by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of $y = f(x)$ | = g(x). | | | | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | result of translating the graph of $y = f(x)$ by $\binom{-3}{1}$ is the graph of $y = f(x)$ by $\binom{-3}{1}$ by $\binom{-3}{1}$ is the graph of $y = f(x)$ by $\binom{-3}{1}$ is the graph of $\binom{-3}{1}$ by -3 | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | | Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants | s. [3 | 9 A curve has equation y = f(x), and it is given that $f'(x) = 2x^2 - 7 - \frac{4}{x^2}$. | (a) | Given that $f(1) = -\frac{1}{3}$, find $f(x)$. | [4] | |-----|--|-----| | | | | |
 |
 | | |------|------|---| | | | | |
 |
 | • | | | | | | | | | |
 |
 | | | | | | | ••••• |
••••• | | |-------|-----------|--| | | | | | ••••• | ••••• | • | ••••• | |-------|-------|---|-------|
 |
 | ••••• | |------|------|-------| |
 |
 | | | | | | |
 |
 | | | ••••• | ••••• | ••••• | ••••• | | • | ••••• | • | |-------|-------|-------|-------|-------|---|-------|---| | | | | | | | | | | ••••• | ••••• | ••••• | ••••• | ••••• | • | ••••• | • | •• | | |----|--| | • | | | • | | | | | | • | | | | | | | | | | | | • | | | • | | | • | | | | | | | C., 4 E //\ | | Г | find $f''(x)$. | | •• | | | • | | | | | | | | | | | | E | Ience, or otherwise, determine the nature of each of the stationary points. [2 | | | | | | | | | | | | | | •• | | | | | **10** (a) Find $\int_{1}^{\infty} \frac{1}{(3x-2)^{\frac{3}{2}}} dx$. [4] The diagram shows the curve with equation $y = \frac{1}{(3x-2)^{\frac{3}{2}}}$. The shaded region is bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. The shaded region is rotated through 360° about the *x*-axis. (b) Find the volume of revolution. [4] | | | ••••• | |-----|--|--------| | | | | | | | ••••• | | | | | | | | •••••• | ••••• | •••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | The | normal to the curve at the point $(1, 1)$ crosses the y-axis at the point A. | | | | | | | (c) | Find the <i>y</i> -coordinate of <i>A</i> . | [4] | | | | | | | | 2 3 |