| (a) | Find <i>v</i> . | [1 | |-----|--|---| (b) | Find the greatest height of <i>P</i> above the ground. | [2 | | (8) | That the greatest height of T upone the ground. | 2 | • | | | | | | | | | | (a) | Find the work done against friction. | [1] | |------------|---|-----| (b) | Find the change in gravitational potential energy of the box. | [2] | (c) | Find the work done by the pulling force. | [1] | | | | | | | | | | | | | | | | | | (a) | Draw a diagram showing all the forces acting on the block. | [1 | |------------|---|----| (b) | Find the coefficient of friction between the block and the table. | [5 | Find the two possible values of the loss of kinetic energy due to the collision. | [6 | |--|------------| •••••••••• | •••••• | | | | | | FT 35.4 | | | | | (a) | Find the values of t for which P is at instantaneous rest. | [2 | |-----|--|-----| (b) | Find the initial acceleration of P . | [2 | (c) | Find the minimum velocity of <i>P</i> . | [2] | Find the distance travelled by P during the time when its velocity is negative. | | |---|---| | | | | | ••••• | | | ••••• | • | | | | | | | | | ••••• | | | | | | | | | • | | | | | | • | | | | | | | | | | | | | | | | | | | ely. | |-----|------|--| | (a) | The | car and caravan are travelling along a straight horizontal road. | | | (i) | Given that the car and caravan have a constant speed of $25 \mathrm{ms^{-1}}$, find the power of the car engine. | (ii) | The engine's power is now suddenly increased to 39 kW. Find the instantaneous acceleration of the car and caravan and find the tension in the tow-bar. | ••••• | |--------------|---|--------| | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | (b) | The car and caravan now travel up a straight hill, inclined at an angle of $\sin^{-1} 0.05$ thorizontal, at a constant speed of v m s ⁻¹ . The car's engine is working at 32.5 kW. | to the | | | Find v. | [3] | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | 7 As shown in the diagram, particles A and B of masses $2 \log$ and $3 \log$ respectively are attached to the ends of a light inextensible string. The string passes over a small fixed smooth pulley which is attached to the top of two inclined planes. Particle A is on plane P, which is inclined at an angle of 10° to the horizontal. Particle B is on plane Q, which is inclined at an angle of 20° to the horizontal. The string is taut, and the two parts of the string are parallel to lines of greatest slope of their respective planes. | (a) | It is given that plane P is smooth, plane Q is rough, and the particles are in limiting equilibrium. | |-----|--| | | Find the coefficient of friction between particle B and plane Q . [5] | (b) | It is given instead that both planes are smooth and that the particles are released from rest at the same horizontal level. | | | | |------------|--|--|--|--| | | Find the time taken until the difference in the vertical height of the particles is 1 m. [You should assume that this occurs before A reaches the pulley or B reaches the bottom of plane Q .] [6] |