(a)	Write down the momentum of P .	[1]
		•••••
		•••••
(b)	After the collision P continues to move in the same direction with speed $0.3 \mathrm{ms^{-1}}$.	
	Find the speed of Q after the collision.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(a)	Find the power of the car's engine, given that the car's acceleration is $0.5 \mathrm{ms^{-2}}$ when its speed is $20 \mathrm{ms^{-1}}$.
(b)	Find the steady speed which the car can maintain with the engine working at this power. [2

3

A block of mass m kg is held in equilibrium below a horizontal ceiling by two strings, as shown in the diagram. One of the strings is inclined at 45° to the horizontal and the tension in this string is T N. The other string is inclined at 60° to the horizontal and the tension in this string is 20 N.

Find T and m .	[5]

4

The diagram shows a velocity-time graph which models the motion of a car. The graph consists of four straight line segments. The car accelerates at a constant rate of $2 \,\mathrm{m\,s^{-2}}$ from rest to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of $T \,\mathrm{s}$. It then decelerates at a constant rate for 5 seconds before travelling at a constant speed of $V \,\mathrm{m\,s^{-1}}$ for 27.5 s. The car then decelerates to rest at a constant rate over a period of 5 s.

(a)	Find T .	[1]
		••••••
	1997	100

speed is one third of the total distance travelled, find V .	[4
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••
	•••••
	•••••
	•••••
	•••••
	700/

1)	Given that the particle is above the level of the top of the building for $4 s$, find h .	[4
		•••••
		•••••
		,

Denoting the time after projection of the first particle by t s, find the value of t for which the two particles are at the same height above the ground.
From Alexander

A block of mass 5 kg is placed on a plane inclined at 30° to the horizontal. The coefficient of friction between the block and the plane is μ .

(a)

Fig. 6.1

When a force of magnitude 40 N is applied to the block, acting up the plane parallel to a line of greatest slope, the block begins to slide up the plane (see Fig. 6.1).

Show that $\mu < \frac{1}{5}\sqrt{3}$.	[4]
	60

(b)

Fig. 6.2

When a force of magnitude 40 N is applied horizontally, in a vertical plane containing a line of greatest slope, the block does not move (see Fig. 6.2).

Show that, correct to 3 decimal places, the least possible value of μ is 0.152. [4]]
	•
	•

	s ⁻² of the particle, t s after leaving O, is given by $a = 0.1t^{\frac{3}{2}}$.
(a)	Find the value of t when the velocity of P is $3 \mathrm{m s^{-1}}$.

[3	
	••••••
101356	
/00\	

Two particles A and B, of masses 0.3 kg and 0.5 kg respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to a horizontal plane and to the top of an inclined plane. The particles are initially at rest with A on the horizontal plane and B on the inclined plane, which makes an angle of 30° with the horizontal. The string is taut and B can move on a line of greatest slope of the inclined plane. A force of magnitude $3.5 \,\mathrm{N}$ is applied to B acting down the plane (see diagram).

60