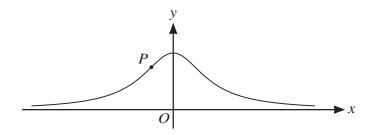
1	Solve	the eq	uation

Give the answer correct to 3 decimal places. [3]	$\ln(1 + \mathrm{e}^{-3x}) = 2.$		
		[3]	
		•••••	
		•••••	
		•	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	


	coefficients.
•	
•	
•	
•	
•	
	State the set of values of x for which the expansion is valid. [
•	
•	

(a)	By taking logarithms, show that the graph of <i>y</i> against <i>x</i> is a straight line. State the exact va of the gradient of this line.
(b)	Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give you ln a
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give ye answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where <i>a</i> and <i>b</i> are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give ye answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give y answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give y answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.

$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0.$	[3
	•••••••••••
	•••••
	•••••
	••••
	••••••
	•••••••••••
	••••••
	•••••
	•••••
	•••••
	同类

Hence solve the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$, for $0^\circ < \theta < 180^\circ$.	[3]
	<i>∫</i> •••\
7	100

5

The diagram shows the curve with parametric equations

$$x = \tan \theta$$
, $y = \cos^2 \theta$,

for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

(a)	Show that the gradient of the curve at the point with parameter θ is $-2\sin\theta\cos^3\theta$.	[3]
		••••••
		•••••
		•••••
		••••••
		7246

The gradient of the curve has its maximum value at the point P.

• • • • • • • • • • • • • • • • • • • •
•••••
 •••••
••••••
•••••
•••••
••••••
•••••
 •••••
••••••
•••••
•••••

6 The complex number u is defined by

$$u = \frac{7 + i}{1 - i}.$$

(a)	Express u in the form $x + iy$, where x and y are real.	[3]
		••••
		••••
		•••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••

(b) Show on a sketch of an Argand diagram the points A, B and C representing u, 7 + i and 1 - i respectively. [2]

	$\tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right) + \frac{1}{4}\pi.$	[3
•••••		
••••••		
		[1] 35t

7 The variables x and t satisfy the differential equation

$$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$

for $t \ge 0$. It is given that x = 0 when t = 0.

[7]	Solve the differential equation and obtain an expression for x in terms of t .
ET 198 A F	

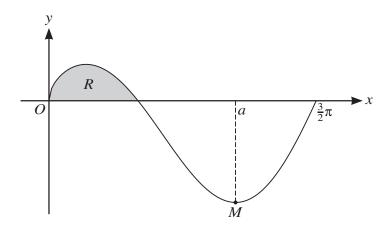
	••••••
State what happens to the value of x when t tends to infinity.	[1]
	700

(b)

8 With respect to the origin O, the position vectors of the points A, B, C and D are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}.$$

(a)	Show that $AB = 2CD$.	[3]
(b)	Find the angle between the directions of \overrightarrow{AB} and \overrightarrow{CD} .	[3]


••••••

9 Let $f(x) = \frac{7x + 18}{(3x + 2)(x^2 + 4)}$.

 •••••
••••••••
 •••••
 •••••
••••••
 ••••••
•••••
••••••

Hence find the exact value of $\int_0^2 f(x) dx$.	
	•••••
	•••••
	•••••
	••••••
	60

10

The diagram shows the curve $y = \sqrt{x} \cos x$, for $0 \le x \le \frac{3}{2}\pi$, and its minimum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

(a)	Show that a satisfies the equation $\tan a = \frac{1}{2a}$.	[3]

(b) The sequence of values given by the iterative formula $a_{n+1} = \pi + \tan^{-1}\left(\frac{1}{2a_n}\right)$, with initial value $x_1 = 3$, converges to a.

Use this formula to determine *a* correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Give your answer in terms of π .	[6
	•••••
	••••••
	•••••
	/00