| 1 | Solve | the eq | uation | |---|-------|--------|--------| | | | | | | Give the answer correct to 3 decimal places. [3] | $\ln(1 + \mathrm{e}^{-3x}) = 2.$ | | | |--|----------------------------------|---|--| | | | [3] | ••••• | ••••• | • | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | coefficients. | |---|--| • | | | | | | | | | • | • | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | State the set of values of x for which the expansion is valid. [| | | | | • | | | | | | | | | • | | | | | | | | | (a) | By taking logarithms, show that the graph of <i>y</i> against <i>x</i> is a straight line. State the exact va of the gradient of this line. | |-----|--| (b) | Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give you ln a | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give ye answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where <i>a</i> and <i>b</i> are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give ye answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact <i>x</i> -coordinate of the point of intersection of this line with the line $y = 3x$. Give y answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give y answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | (b) | Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. | | $\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0.$ | [3 | |---|-------------| | | | | | | | | ••••••••••• | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | •••• | | | | | | •••••• | | | ••••••••••• | | | | | | | | | | | | •••••• | | | | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | 同类 | | | | | Hence solve the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$, for $0^\circ < \theta < 180^\circ$. | [3] | |---|---------------| <i>∫</i> •••\ | | 7 | 100 | 5 The diagram shows the curve with parametric equations $$x = \tan \theta$$, $y = \cos^2 \theta$, for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$. | (a) | Show that the gradient of the curve at the point with parameter θ is $-2\sin\theta\cos^3\theta$. | [3] | |-----|--|--------| •••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | •••••• | | | | | | | | | | | | | | | | 7246 | | | | | The gradient of the curve has its maximum value at the point P. | • | |---| | | | ••••• | | | |
••••• | | | | •••••• | |
 | | | | | | | | ••••• | | | | ••••• | | | | •••••• | |
 | | | | | | | | ••••• | | | |
••••• | | | | •••••• | |
 | | | |
 | | | | ••••• | | | | ••••• | | | | | |
 | | | |
 | | | |
 | | | | | | | 6 The complex number u is defined by $$u = \frac{7 + i}{1 - i}.$$ | (a) | Express u in the form $x + iy$, where x and y are real. | [3] | |-----|--|-------| | | | •••• | | | | •••• | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | (b) Show on a sketch of an Argand diagram the points A, B and C representing u, 7 + i and 1 - i respectively. [2] | | $\tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right) + \frac{1}{4}\pi.$ | [3 | |--------|---|---------| ••••• | •••••• | [1] 35t | | | | | 7 The variables x and t satisfy the differential equation $$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$ for $t \ge 0$. It is given that x = 0 when t = 0. | [7] | Solve the differential equation and obtain an expression for x in terms of t . | |------------|--| ET 198 A F | | | | | | | •••••• | |--|--------| | State what happens to the value of x when t tends to infinity. | [1] | | | | | | | | | | | | | | | | | | 700 | **(b)** **8** With respect to the origin O, the position vectors of the points A, B, C and D are given by $$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}.$$ | (a) | Show that $AB = 2CD$. | [3] | |------------|--|-----| (b) | Find the angle between the directions of \overrightarrow{AB} and \overrightarrow{CD} . | [3] |
 | |--------| | | |
 | | | |
 | |
 | | | |
 | | | | | | | | •••••• | |
 | |
 | | | | | | | | | |
 | | | |
 | |
 | | | | | | | | | 9 Let $f(x) = \frac{7x + 18}{(3x + 2)(x^2 + 4)}$. |
••••• | |------------| |
 | | | | •••••••• | |
••••• | |
••••• | |
 | |
 | | | | •••••• | |
 | |
 | |
 | | | | | |
•••••• | | | | | |
 | | | | ••••• | | •••••• | |
 | |
 | |
 | | | | | | | | Hence find the exact value of $\int_0^2 f(x) dx$. | | |--|--------| ••••• | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | •••••• | 60 | **10** The diagram shows the curve $y = \sqrt{x} \cos x$, for $0 \le x \le \frac{3}{2}\pi$, and its minimum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R. | (a) | Show that a satisfies the equation $\tan a = \frac{1}{2a}$. | [3] | |-----|--|-----| **(b)** The sequence of values given by the iterative formula $a_{n+1} = \pi + \tan^{-1}\left(\frac{1}{2a_n}\right)$, with initial value $x_1 = 3$, converges to a. Use this formula to determine *a* correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3] | Give your answer in terms of π . | [6 | |--------------------------------------|--------| ••••• | •••••• | ••••• | | | | | | | | | | | | | | | | | | /00 |