| | ••••• | |--|---------| (m) (%) | | | | On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4] 3 The parametric equations of a curve are | x = 3 - 6 | $\cos 2\theta$, | $y = 2\theta + \sin 2\theta,$ | |---|------------------|-------------------------------| | for $0 < \theta < \frac{1}{2}\pi$. | | | | Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot \theta$. | | [5] | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | 4 | Solve | the e | equati | on | |---|-------|-------|--------|----| | | | | | | | $\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$ | | |--|------------| | Give your answers correct to 3 decimal places. | [6] | •••••••••• | (a) | | 5 | (a) | By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly roots in the interval $0 < x < \pi$. | two [2] | |---|------------|---|-----------| ••••• | | | | | ••••• | | | (b) | The sequence of values given by the iterative formula | | | | | $x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$ | | | | | with initial value $x_1 = 2$, converges to one of these roots. | | | | | Use the formula to determine this root correct to 2 decimal places. Give the result of e iteration to 4 decimal places. | each | ••••• | | | | | ••••• | | | | | , | 2 | | varue | of R and give α | correct to 2 of | decimai pi | aces. | | | | ĺ | |-------|--------------------------|-----------------|------------|---------|---|--------|-------|---| | | •••• | | | | | | | | | | | | | | | | | | | ••••• | | | | | ••••• | ••••• | ••••• | • | ••••• | | | | | ••••• | ••••• | ••••• | • | ••••• | | ••••• | | | • | | | | •••• | | | | | | | | | | | | | | | | | | ••••• | ••••• | , | ••••• | •••••• | ••••• | ••••• | ••••• | • | ••••• | | | | •••••• | ••••• | •••••• | ••••• | • | ••••• | | | | • | • | •••••• | ••••• | • | | | | | ••••• | | ••••• | ••••• | | | | | • | | | • | ••••• | | | | | ••••• | ••••• | ••••• | , | ••••• | •••••• | ••••• | •••••• | ••••• | • | | | | | ••••• | | • | | | | | | | | | | | | | | | ••••• | | | ••••• | ••••••• | ••••• | •••••• | ••••• | • | ••••• | •••••• | | •••••• | ••••••• | ••••• | •••••• | | | | | | | ••••• | | ••••• | | | | | | | | | | | | - 19 | 100 | | • | | |---|---| | | | | | | | • | | | | | | | | | • | •••••• | | • | | | | | | | | | • |
••••• | | • | | | | | | • | •••••• | | • | | | |
 | | | | | • | ••••• | | • |
• | | | | | | | | • |
••••• | | | | | | | | • | •••••• | | • | | | |
 | | | | | • |
••••• | | • | | | | | | • | | | | | | Verify that $-1 + \sqrt{5}i$ is a root of the equation $2x^3 + x^2 + 6x - 18 = 0$. | [3 | |---|--------| ••••• | | | ••••• | | | | | | | | | ••••• | •••••• | | | ••••• | | | ••••• | 60 | | Find the other roots of this equation. | [4 | |--|--------| | | | | | | | | | | | | | | •••••• | | | ••••• | ••••• | •••••• | | | ••••• | 8 The coordinates (x, y) of a general point of a curve satisfy the differential equation $$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$ for x > 0. It is given that y = 1 when x = 1. | Solve the differential equation, obtaining an expression for y in terms of x . | [6] | |--|-----|
 | |------| |
 | 9 Let $f(x) = \frac{8 + 5x + 12x^2}{(1 - x)(2 + 3x)^2}$. |
 | |------| | | |
 | |
 | | | | | | | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | |
 | | | | | | | |
 | | | | | |
 | | | | | | | | | | 00 | | | | | | | | | | | | | | | | | [5 | |------|--------|---|-------|---|--------|---|---|---|---|-------|---|---|---|--------|-------| •••• | | | | | | | | ••••• | | ••••• | | • | •••• | •••••• | • | ••••• | • | ••••• | ••••• | ••••• | • | • | ••••• | • | • • • • • • • • • • | • | ••••• | ••••• | •••• | •••••• | • | ••••• | • | ••••• | • | • | • | • | ••••• | ••••• | • | • | •••••• | ••••• | •••• | | | ••••• | • | | • | | ••••• | | ••••• | | • | | | ••••• | | | | | | | | | | | | | | | | | | | •••• | •••••• | • | ••••• | • | ••••• | • | • | • • • • • • • • • • | ••••• | ••••• | • | • | • | •••••• | ••••• | | | | | | | | | | | | | | • | •••• | ••••• | • | ••••• | • | ••••• | • | • | • | • | ••••• | ••••• | • | • | ••••• | ••••• | | | | | | | | | | • | | | | • | •••• | | • | ••••• | • | | • | | ••••• | • | ••••• | | • | • | •••••• | ••••• | | | | | | | | | | | | | | | | | | | •••• | • | • | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | • • • • • • • • • | ••••• | • | •••••• | ••••• | | •••• | •••• | •••••• | • | ••••• | • | ••••• | ••••• | • • • • • • • • • • | • • • • • • • • • • | • | ••••• | • | • | • | ••••• | ••••• | | | | | | | | | | | | | | • | •••• | •••••• | • | ••••• | • | ••••• | ••••• | ••••• | • | • | ••••• | • | • | • | ••••• | ••••• | •••• | | ••••• | ••••• | • | | | | ••••• | ••••• | ••••• | | • | | | ••••• | | | | | | | | | | | | | | | | | | | •••• | • | • | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | • • • • • • • • • | ••••• | • • • • • • • • • • | •••••• | ••••• | | | | | | | | | | | | ••••• | | ••••• | • | •••• | •••••• | • | ••••• | • | •••••• | • | | ••••• | • | ••••• | •••••• | • | • | •••••• | ••••• | | | | | | | | | | | | ••••• | •••• | | | | | | | | | | | | | | | | 10 The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M. | (a) | Find the exact coordinates of M . | [5] | |-----|-------------------------------------|-------| ••••• | · | of e. | |---|--------| | | | | • | | | _ | | | • | | | | | | | | | | | | | | | • | | | _ | | | • | | | | | | | | | | | | | | | • | | | | | | • | | | | | | | | | • | | | | | | • | | | | | | | | | | | | | | | • | | | | | | • | | | | | | | | | • | | | | | | • | | | | | | | | | | | | | | | | | | | 191-20 | | • | | | a) | Given that the two lines intersect, find the value of a and the position vector of the point of intersection. | |----|---| tw | vo possible values of a. | [(| |-----|--------------------------|---| | | | | | ••• | | • | | | | | | ••• | | • | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | • | | | | | | ••• | | • | | | | | | ••• | | • | | | | | | | | | | | | | | | | | | ••• | | ••••• | | | | | | ••• | | • | | | | | | ••• | | • | | | | | | ••• | | • | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | • | | | | | | ••• | | • | | | | | | | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | 1,000 | (00) |