]	Find the value of the constant k .	[4]
		••••
		•••••
		•••••
		•••••
		• • • • •
		••••
		•••••
		•••••
		•••••
		•••••
•		•••••
٠		
•		
•		
•		•••••
•		
•		•••••
•		
•		•••••
•		
		•••••

	Page 2 of 16	9709_w20_qp_
The first, second and third ten where p is positive.	rms of a geometric progression are	2p + 6, $-2p$ and $p + 2$ respectivel
Find the sum to infinity of the	e progression.	[:

Show that, for all values of m , the line intersects the curve at two distinct points.	[5]
	••••••
	•
	•••••
	•••••
	••••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	100

4 The sum, S_n , of the first n terms of an arithmetic progression is given by

$$S_n = n^2 + 4n.$$

The kth term in the progression is greater than 200.

Find the smallest possible value of k .	[5]
	•••••
	••••••
	••••••••••••

5 Functions f and g are defined by

$$f(x) = 4x - 2$$
, for $x \in \mathbb{R}$,
 $g(x) = \frac{4}{x+1}$, for $x \in \mathbb{R}$, $x \neq -1$.

(a)	Find the value of $fg(7)$.	[1]
		,
		•••••
(b)	Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.	[5]
		7007

				••••••
				• • • • • • • • • • • • • • • • • • • •
				••••••
ence solve the equation	$\left(\frac{1}{\cos x} - \tan x\right)$	$\frac{1}{\sin x} + 1 = 2 \tan^2 x$	for $0^{\circ} \le x \le 180^{\circ}$.	
				•••••
				•••••
				•••••
	ence solve the equation	ence solve the equation $\left(\frac{1}{\cos x} - \tan x\right)\left(\frac{1}{\cos x}\right)$	ence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2 \tan^2 x$	ence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2 \tan^2 x$ for $0^\circ \le x \le 180^\circ$.

- 7 The point (4, 7) lies on the curve y = f(x) and it is given that $f'(x) = 6x^{-\frac{1}{2}} 4x^{-\frac{3}{2}}$.
 - (a) A point moves along the curve in such a way that the *x*-coordinate is increasing at a constant rate of 0.12 units per second.

			e y-coordinate			
					••••	
•••••		•••••		•••••		
•••••	•••••	••••••	•••••	•••••••••	•••••	
					••••	
•••••		•••••		•••••		
•••••						
Find	l the equation	of the curve	÷.			
Find	I the equation	of the curve	÷.			
Find	I the equation	of the curve	······································			
Find	I the equation	of the curve	······································			
Find	I the equation	of the curve	······································			
Find	I the equation	of the curve				

In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.

press the area of the shaded region in terms of r and θ .	[.

(b)	In the case where $r = 10$ and $\theta = 0.6$, find the perimeter of the shaded region.	[4]
		100

(a)	Find the equation of the circle.	[3
		••••••
		•••••
		•••••
		•••••
	Int C is such that AC is a diameter of the circle. Point D has coordinates (5, 16).	r
	Int C is such that AC is a diameter of the circle. Point D has coordinates (5, 16). Show that DC is a tangent to the circle.	[4
		[4
		[4
		[4
		[4
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	
	Show that <i>DC</i> is a tangent to the circle.	

The other tangent from D to the circle touches the circle at E.

	Find the coordinates of E .	
٠		•••••
•		••••••
•		•••••
•		
•		•••••
•		
•		

10

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y dx$. [6]

•		•••••
•		
•		•••••
•		
		•••••
		•••••
		•••••
	ind the area of the shaded region bounded by the curve and the coordinate axes.]
•	ind the area of the shaded region bounded by the curve and the coordinate axes.	[
	ind the area of the shaded region bounded by the curve and the coordinate axes.	[
	ind the area of the shaded region bounded by the curve and the coordinate axes.	[
	ind the area of the shaded region bounded by the curve and the coordinate axes.	[
	ind the area of the shaded region bounded by the curve and the coordinate axes.	[
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	[:
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	
	ind the area of the shaded region bounded by the curve and the coordinate axes.	

11 A curve has equation $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.

(a)	State the greatest and least values of y.	[2]
		•••••
		•••••

(b) Sketch the graph of $y = 3\cos 2x + 2$ for $0 \le x \le \pi$. [2]

(c) By considering the straight line y = kx, where k is a constant, state the number of solutions of the equation $3\cos 2x + 2 = kx$ for $0 \le x \le \pi$ in each of the following cases.

(i)
$$k = -3$$

(ii)
$$k = 1$$

(iii) k = 3

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f(x) = 3\cos 2x + 2,$$

$$g(x) = f(2x) + 4,$$

$$h(x) = 2f\left(x + \frac{1}{2}\pi\right).$$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]	
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	
(e)		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					
	•••••••••••				
	•••••				
	••••••••••••				
	••••••				
	••••••				
	•••••				
	••••••				
	••••••				
	······································				