| $y = 2x^2 + 5$ do not meet. | [3 | |-----------------------------|---------| III 354 | | | | | | | | Find th | he equation | of the curve | ·· | | | | I | |---------|-------------|--------------|---|-----------|---|--------|---| | | | | ••••• |
••••• | ••••• | | | | | | | |
 | ••••• | ••••• | | ••••• | •••••• | • | •••••• | | | ••••• | ••••• | | ••••• |
••••• | • | •••••• | | | ••••• | | | |
 | | | | | | ••••• | | |
 | | | | | | | | |
 | ••••• | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | ••••• | • | •••••• | | | ••••• | ••••• | | ••••• |
••••• | • | •••••• | | | ••••• | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | ••••• | ••••• | ••••••• | •••••• | •••••• | • | •••••• | | | ••••• | ••••• | | • |
••••• | • | ••••• | • | | Find the rat | e at which the radius of the balloon is increasing v | when the radius is 10 cm. | [3 | |---|--|---|-------| | | | | | | | | | | | ••••• | | | ••••• | *************************************** | | | | | ••••• | | | | | | | | | | | | | | | ••••• | •••••• | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | • | ••••• | | | | | | | | | | 354 | | ••••• | | • | | 4 In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$. | Find, in terms of a cosine function, the equation of the upper curve. | [3] | |---|-------| | | | | | | | | ••••• | 5 In the expansion of $\left(2x^2 + \frac{a}{x}\right)^6$, the coefficients of x^6 and x^3 are equal. | Find the value of the non-zero constant a . [4] | |--| Find the coefficient of x^6 in the expansion of $(1-x^3)\left(2x^2 + \frac{a}{x}\right)^6$. | | | | | | | | | | | | | | The equation of a curve is $y = 2 + \sqrt{25 - x^2}$. | | | |---|-------|--------| | Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$. | | [5] | | | | | | | | | | | | ••••• | | | | ••••• | | | | | | | | •••••• | | | | ••••• | | | ••••• | ••••• | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | Show that $\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = 2 \tan^2 \theta$. | [3 | |---|---------| TET 254 | | | | | Hence solve the equation | $1 - \sin \theta$ | $1 + \sin \theta$ | • | [| |--------------------------|-------------------|-------------------|---|---| | | | | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | ••••• | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | ••••• | ••••• | ••••• | a) | Show that $r = 2R - 1$. | [| |----|--------------------------|-------| | | | | | | | ••••• | It is now given that the 3rd term of the first progression is equal to the 2nd term of the second progression. | (b) | Express S in terms of a . | [4] | |------------|-------------------------------|------------| Fin 254 Fi | | | | 60 | | | | | 9 The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D. The coordinates of A are (-1, 4) and the coordinates of B are (3, 2). | (a) | Find the equation of the tangent <i>CBD</i> . | [2] | |-----|---|-------| | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | 7 | 60 | | •• | | •••••• | |-------------|---|--------| | | | | | | | | | | | ••••• | | • | | ••••• | | | | | | | | | | • | | ••••• | | • | | | | | | | | • | | •••••• | | • | | ••••• | | | | | | | | | | | | | | • | | | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x -coordinates of C and D . | [3 | | | Find, by calculation, the x-coordinates of C and D. | [3 | | · · · · · · | Find, by calculation, the x-coordinates of C and D. | | | | Find, by calculation, the x-coordinates of C and D. | | | | Find, by calculation, the x-coordinates of C and D. | | | | Find, by calculation, the x-coordinates of C and D. | | The diagram shows a sector CAB which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where COD is a straight line and angle ACD is θ radians. | (a) | Find CD in terms of r and $\sin \theta$. | [3] | |-----|---|--------| •••••• | | | | •••••• | | | | | | | | | | | | | | | | | It is now given that r = 4 and $\theta = \frac{1}{6}\pi$. | 1 | Find the perimeter of sector CAB in terms of π . | [| |------|---|---| | | | | | | | | | • | | • | | | | | | | | | | • | | • | | • | | | | _ | | | | • | | | | • | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | F | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | • | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | I | Find the area of the shaded region in terms of π and $\sqrt{3}$. | I | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | 1 | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. |] | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | [| | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | . II | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | | | Find the area of the shaded region in terms of π and √3. | | | . II | Find the area of the shaded region in terms of π and √3. | | | . II | Find the area of the shaded region in terms of π and $\sqrt{3}$. | | 11 The functions f and g are defined by $$f(x) = x^2 + 3$$ for $x > 0$, $g(x) = 2x + 1$ for $x > -\frac{1}{2}$. | (a) | Find an expression for $fg(x)$. | [1] | |------------|---|-----| (b) | Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$. | [4] |) | Solve the equation $fg(x) - 3 = gf(x)$. | [4 | |---|--|--------| | | | | | | | | | | | | | | | ••••• | | | | | | | | ••••• | ••••• | | | | ••••• | •••••• | | | | | | | | | **12** The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the *x*-axis at A(4, 0) and crosses the straight line at B and C. | (a) | Find, by calculation, the x -coordinates of B and C . | [4] | |------------|---|---| | | | ••••• | · • • • • • | | | | | | | | | | | | · · · · · · · | | (b) | Show that B is a stationary point on the curve. | [2] | | | | · • • • • • • • • • • • • • • • • • • • | | | | | | | | · • • • • | | | | | | | | | | (c) | Find the area of the shaded region. | [6] | | |-----|-------------------------------------|------|---| /00/ | ď |