$y = 2x^2 + 5$ do not meet.	[3
	III 354

Find th	he equation	of the curve	··				I
			•••••	 •••••	•••••		
•••••	•••••		•••••	••••••	•	••••••	
•••••	•••••		•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	••••••	
•••••				 			
	•••••			 			
				 	•••••		
•••••	•••••		•••••	•••••	•	••••••	
•••••	•••••		•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	••••••	
•••••				 			
•••••	•••••	•••••••	••••••	••••••	•	••••••	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	 •••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

Find the rat	e at which the radius of the balloon is increasing v	when the radius is 10 cm.	[3
•••••			•••••

•••••			
•••••			
••••••			
•••••			
•••••			•
			•••••
			354
•••••		• • • • • • • • • • • • • • • • • • • •	

4

In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

Find, in terms of a cosine function, the equation of the upper curve.	[3]
	•••••

5 In the expansion of $\left(2x^2 + \frac{a}{x}\right)^6$, the coefficients of x^6 and x^3 are equal.

Find the value of the non-zero constant a . [4]
Find the coefficient of x^6 in the expansion of $(1-x^3)\left(2x^2 + \frac{a}{x}\right)^6$.

The equation of a curve is $y = 2 + \sqrt{25 - x^2}$.		
Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$.		[5]
		•••••
		•••••
		••••••
		•••••
	•••••	•••••
		•••••
		•••••
		•••••

Show that $\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = 2 \tan^2 \theta$.	[3
	TET 254

Hence solve the equation	$1 - \sin \theta$	$1 + \sin \theta$	•	[
		•••••		
		•••••		
		•••••		
	•••••	•••••		
		•••••		
	•••••	•••••		
		•••••		
	•••••	•••••		
	•••••			

a)	Show that $r = 2R - 1$.	[
		•••••

It is now given that the 3rd term of the first progression is equal to the 2nd term of the second progression.

(b)	Express S in terms of a .	[4]
		Fin 254 Fi
		60

9

The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

(a)	Find the equation of the tangent <i>CBD</i> .	[2]
		•••••
		•••••
		•••••
	7	60

••		••••••
		•••••
•		•••••
•		•••••
•		
•		••••••
•		•••••
•		
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x -coordinates of C and D .	[3
	Find, by calculation, the x-coordinates of C and D.	[3
· · · · · ·	Find, by calculation, the x-coordinates of C and D.	
	Find, by calculation, the x-coordinates of C and D.	
	Find, by calculation, the x-coordinates of C and D.	
	Find, by calculation, the x-coordinates of C and D.	

The diagram shows a sector CAB which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where COD is a straight line and angle ACD is θ radians.

(a)	Find CD in terms of r and $\sin \theta$.	[3]
		••••••
		••••••

It is now given that r = 4 and $\theta = \frac{1}{6}\pi$.

1	Find the perimeter of sector CAB in terms of π .	[
•		•
•		•
•		
_		
•		
•		
•		
•		
F	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
•	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
I	Find the area of the shaded region in terms of π and $\sqrt{3}$.	I
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	1
	Find the area of the shaded region in terms of π and $\sqrt{3}$.]
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	[
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
. II	Find the area of the shaded region in terms of π and $\sqrt{3}$.	
	Find the area of the shaded region in terms of π and √3.	
. II	Find the area of the shaded region in terms of π and √3.	
. II	Find the area of the shaded region in terms of π and $\sqrt{3}$.	

11 The functions f and g are defined by

$$f(x) = x^2 + 3$$
 for $x > 0$,
 $g(x) = 2x + 1$ for $x > -\frac{1}{2}$.

(a)	Find an expression for $fg(x)$.	[1]
(b)	Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.	[4]

)	Solve the equation $fg(x) - 3 = gf(x)$.	[4
		•••••
		•••••
		•••••
		•••••
		••••••

12

The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the *x*-axis at A(4, 0) and crosses the straight line at B and C.

(a)	Find, by calculation, the x -coordinates of B and C .	[4]
		•••••
		· • • • • •
		· · · · · · ·
(b)	Show that B is a stationary point on the curve.	[2]
		· • • • • • • • • • • • • • • • • • • •
		· • • • •

(c)	Find the area of the shaded region.	[6]	
		/00/	ď