(a)	Find the time for which the car is accelerating.	[2
		•••••
		•••••
(b)	Sketch the velocity-time graph for the motion of the car, showing the key points.	[2
(c)	Find the average speed of the car during its motion.	[2
		••••••
		•••••
		••••••
		7-7-

Find the accele	eration of the particles and the tension in the string connecting them.	[5
i ma me accere	ration of the particles and the tension in the suring connecting them.	[2
• • • • • • • • • • • • • • • • • • • •		
•••••		•••••
•••••••		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
••••••		••••
••••••		•••••
•••••		•••••
•••••		•••••
•••••		•••••
•••••		•••••

eatest value of X for which the crate remains at rest.	[5

4

Three coplanar forces of magnitudes $20\,\mathrm{N}$, $100\,\mathrm{N}$ and $F\,\mathrm{N}$ act at a point. The directions of these forces are shown in the diagram.

Given that the three forces are in equilibrium, find F and α .	[6]
	•••••

Joo (

[3]	Show that $d = 100$.
••••••	
••••••	
•••••	
••••••	
••••••	
•••••	
•••••	

Car B starts off at the same instant as car A. The two cars arrive at P simultaneously and with the same speed. The engine of B produces a driving force of 3200 N and the car experiences a constant resistance to motion of 1200 N.

	•••••
	••••••
ich B can maintain when its engine is working at	
ich B can maintain when its engine is working at	t the same rate as it
ich B can maintain when its engine is working at	
ich B can maintain when its engine is working at	
	[:
	[:
	[:
	[:
	[:
	[:
	[:

6	A particle starts from a point O and moves in a straight line	The velocity $v \text{m s}^{-1}$	of the particle at
	time ts after leaving O is given by		

$$v = k(3t^2 - 2t^3),$$

where k is a constant.

(a)	Verify that the particle returns to O when $t = 2$.	[4]

	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	• • • • • •
	• • • • • • •
	• • • • • • •
	• • • • • •
	• • • • • • •
F=1.04	

(a)	Find the speed of B immediately after the collision.	[2
		•••••
		•••••
		•••••
		•••••
and whe orev	er the collision, when B has moved 1.6 m down the plane from the point of collision, it hits a be returns back up the same line of greatest slope. B hits the barrier 0.4 s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44 s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	thei
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$.	thei
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$.	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed
and whe prev	returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B .	speed [7

<i>J</i> 00\