| (a) | Find the time for which the car is accelerating. | [2 | |------------|---|--------| | | | | | | | ••••• | | | | | | | | | | | | ••••• | | (b) | Sketch the velocity-time graph for the motion of the car, showing the key points. | [2 | (c) | Find the average speed of the car during its motion. | [2 | | | | •••••• | | | | ••••• | | | | •••••• | | | | 7-7- | | Find the accele | eration of the particles and the tension in the string connecting them. | [5 | |---|---|---| | i ma me accere | ration of the particles and the tension in the suring connecting them. | [2 | | | | | | | | | | • | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | | ••••••• | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | • | | | | | | •••••• | | •••• | | | | | | •••••• | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | | ••••• | | ••••• | ••••• | | ••••• | | | | | | ••••• | | ••••• | eatest value of X for which the crate remains at rest. | [5 | |--|----| 4 Three coplanar forces of magnitudes $20\,\mathrm{N}$, $100\,\mathrm{N}$ and $F\,\mathrm{N}$ act at a point. The directions of these forces are shown in the diagram. | Given that the three forces are in equilibrium, find F and α . | [6] | |---|-------| | | | | | | | | | | | | | | ••••• |
 | |-------| | | |
 | | | | | | | | | | Joo (| | [3] | Show that $d = 100$. | |--------|-----------------------| •••••• | | | | | | | | | | | | | | | •••••• | | | ••••• | | | | | | | | | | | | •••••• | | | •••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | Car B starts off at the same instant as car A. The two cars arrive at P simultaneously and with the same speed. The engine of B produces a driving force of 3200 N and the car experiences a constant resistance to motion of 1200 N. | | ••••• | |--|-----------------------| | | | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | ich B can maintain when its engine is working at | | | ich B can maintain when its engine is working at | t the same rate as it | | ich B can maintain when its engine is working at | | | ich B can maintain when its engine is working at | | | | | | | [: | | | [: | | | [: | | | [: | | | [: | | | [: | | | [: | | 6 | A particle starts from a point O and moves in a straight line | The velocity $v \text{m s}^{-1}$ | of the particle at | |---|---|-----------------------------------|--------------------| | | time ts after leaving O is given by | | | $$v = k(3t^2 - 2t^3),$$ where k is a constant. | (a) | Verify that the particle returns to O when $t = 2$. | [4] | |-----|--|-----| ••••• | |--------|---------------| | | | | | ••••• | | | | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | • • • • • • | | | • • • • • • • | | | • • • • • • • | | | • • • • • • | | | • • • • • • • | | F=1.04 | | | | | | (a) | Find the speed of B immediately after the collision. | [2 | |--------------------|---|----------| | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | and
whe
orev | er the collision, when B has moved 1.6 m down the plane from the point of collision, it hits a be returns back up the same line of greatest slope. B hits the barrier 0.4 s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44 s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | thei | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. | thei | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed | | and
whe
prev | returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision on it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after vious collision, and they then coalesce on impact. Show that the speed of B immediately after it hits the barrier is $0.5 \mathrm{ms^{-1}}$. Hence find the of the combined particle immediately after the second collision between A and B . | speed [7 | |
 | |--------------| |
 | |
 | |
 | | | | | |
 | | | |
 | | | | | | | | | | | | | |
 | |
 | | | | | | | | | | | | | | | | <i>J</i> 00\ |