	2 3x+a < 2x	c+3a ,		
where a is a positive constant.				[4
			••••••	
			••••••	•••••
				••••••
			••••••	••••••
				••••••
			••••••	••••••
		•••••	•••••	•••••
	•••••	•••••	••••••	•••••
	•••••	•••••	••••••	
	•••••	•••••	••••••	••••••
		•••••		••••••
		•••••		
	••••••	•••••		

1

	•••••		•••••
 	•••••		•••••
 	••••••		•••••
 			•••••
 	••••••	••••••	•••••••••••
 	••••••••••		••••••••••

		•••••
		••••••
		•••••
		•••••
.		2.1
D)	Hence solve the equation $\log_3(4y+1) = 1 + 2\log_3(2y-1)$, giving your answer coplaces.	orrect to 2 decir
		••••••
		•••••
		[] · · · ·

		rage 401 17	9709_s22_qp_
Γhe	curve $y = e^{-4x} \tan x$ has two st	tationary points in the interval $0 \le x < \frac{1}{2}\pi$.	
(a)	Obtain an expression for $\frac{dy}{dx}$ a and b are constants.	and show it can be written in the form $\sec^2 x$	$(a+b\sin 2x)e^{-4x}$, where

Hence find the exact <i>x</i> -coordinates of the two stationary points.	[3
	77-7-2

- 5 The complex number 3 i is denoted by u.
 - (a) Show, on an Argand diagram with origin O, the points A, B and C representing the complex numbers u, u^* and $u^* u$ respectively.

State the type of quadrilateral formed by the points O, A, B and C.

[3]

	••••••
Express $\frac{u^*}{u}$ in the form $x + iy$, where x and y are real.	[3]

.....

(b)

	By considering the argument of $\frac{u^*}{u}$, or otherwise, prove that $\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3})$.	[2
		• • • •
		•••
•		•
		• • • •
		• • •
		• • •
		•••
		• • •
		• • • •
		•••
		•••
		•••
		• • •
		•••
		•••
		• • •
	600	

6 The parametric equations of a curve are $x = \frac{1}{\cos t}$, $y = \ln \tan t$, where $0 < t < \frac{1}{2}\pi$.

		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	••••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••••••	••••••
		•••••	• • • • • • • • • • • • • • • • • • • •			•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	••••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••••••	••••••
		•••••	• • • • • • • • • • • • • • • • • • • •			
		•••••	• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••

Find the equation of the tangent to the curve at the point where $y = 0$.	[3]
	•••••
	•••••
	FET:254.F

7 Let $f(x) = \frac{5x^2 + 8x - 3}{(x - 2)(2x^2 + 3)}$.

•••	•••••
•••	•••••
•••	•••••
•••	
•••	 •
•••	 •••••
•••	•••••
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	
•••	••••••
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	•••••
•••	

									[:
	•••••				•••••		•••••		
	•••••								
••••••	•••••		••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••	•••••	•••••		•••••		
	•••••								
		• • • • • • • • • • • • • • • • • • • •							
• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	•••••		•••••	•••••	•••••	••••••	••••••	•••••	
	•••••								
					••••				
• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	
			••••••	••••••	•••••	••••••	••••••	••••••	
			•••••	•••••	•••••	•••••	•••••		
••••••	•••••		••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	
	•••••		•••••	•••••	•••••	•••••	•••••	•••••	
••••••	•••••		•••••	•••••	•••••	•••••	•••••		
	•••••								

	s a constant and N is a continuous variable. It is given that when $t = 0$, $N = 100$.
[Solve the differential equation, obtaining a relation between N , k and t .
••••••	
•••••	

of t , and find the greatest value of N predicted by this mod	ain an expression for N in terms of t , and
of t , and find the greatest value of N predicted by this mod	an expression for N in terms of t , and
	ain an expression for N in terms of t , and

(a)	Find in degrees the acute angle between the directions of OA and l .	[3
(b)	Find the position vector of the foot of the perpendicular from A to l .	[4

(c)	Hence find the position vector of the reflection of A in l .	[2]

10 The constant a is such that $\int_1^a x^2 \ln x \, dx = 4$.

(a)	Show that $a = \left(\frac{35}{3 \ln a - 1}\right)^{\frac{1}{3}}$.	[5]

				•••••			
		•					
•••••		•••••		•••••	•••••	•••••	•••••
						•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	•••••
•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
 Use an itera	tive formul	a based on t	the equation	in part (a) to	o determine	a correct to	o 2 decim
Use an itera	tive formule the result of	a based on tof each iterate	the equation	in part (a) to imal places.	o determine	a correct to	
Use an itera places. Give	tive formule the result of	a based on tof each iterate	the equation tion to 4 dec	in part (a) to imal places.	o determine	a correct to	
Use an itera places. Give	tive formule the result o	a based on tof each iteration	the equation tion to 4 dec	in part (a) to imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	the equation tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	
places. Give	e the result o	of each itera	tion to 4 dec	imal places.	o determine	a correct to	o 2 decim