	olve the equation $ln(e^{2x} + 3) = 2x + ln 3$, giving your answer correct to 3 decimal places.	
••		
•		•••••
•		• • • • • • • •
•		
•		•••••
•		
•		••••••
•		••••••
•		••••••
•		• • • • • • •
•		
••		
	Test to	
••		
		100

Solve the equation $3\cos 2\theta = 3\cos \theta + 2$, for $0^{\circ} \le \theta \le 360^{\circ}$.	[5]
	F1354

Find the values of a and b .	[5
	177524

Find the	<i>x</i> -coordinate	of this stat	ionary poir	nt, giving y	our answer	correct to 3	significant	figures.	[6]
									••••
••••••	•••••		•••••	•••••		•••••		•••••	••••
	•••••		•••••					•••••	••••
	•••••		•••••					•••••	
	•••••		•••••					•••••	••••
									••••
									••••
									••••
									••••
									••••
									••••
									••••
									••••
								•••••	
									••••
								•••••	
									••••
									••••
									••••
									••••

[2]

5 (a) By sketching a suitable pair of graphs, show that the equation $\ln x = 3x - x^2$ has one real root. [2]

(c) Use the iterative formula $x_{n+1} = \sqrt{3x_n - \ln x_n}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

(b) Verify by calculation that the root lies between 2 and 2.8.

6 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{y-x},$$

and y = 0 when x = 0.

Solve II.	e differentia	ai equatioi	i, Obtaiii	ing an ex	pressioi	1 101 <i>y</i> 11	i terms (л х.		[7
•••••	•••••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
••••••	•••••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
					•••••					•••••
•••••	••••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••				•••••					•••••
					•••••					•••••
			•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
	•••••		•••••		•••••				•••••	
					•••••					
					•••••					
					•••••					
					•••••					
					•••••	•••••	•••••			
					•••••					
					•••••					
					•••••					
						•••••	•••••			
					•••••					
							• • • • • • • • • • • • • • • • • • • •			

(b)	Find the value of y when $x = 1$, giving your answer in the form $a - \ln b$, where a and b are integers. [1]

7 The equation of a curve is $x^3 + 3x^2y - y^3 = 3$.

Show that $\frac{d}{d}$	$\frac{y}{x} = \frac{x^2 + 2xy}{y^2 - x^2}.$		[4
		 	[=]-32.
		 	

Find the coordinates of the points on the curve where the tangent is parallel to the <i>x</i> -axis.	[-
	••
	• •
	• •
	• •
	• •
	• •
	• •
	•
	• •
	•
	•
	•
	•
	• •
	• •
	•
	Ų

8 Let $f(x) = \frac{x^2 + 9x}{(3x - 1)(x^2 + 3)}$.

	 	••••••		•
		•••••		
		•••••		
		•••••	•••••	••••••
	 	•••••		
		•••••		•
		•••••		•
		•••••		•
Fin 28	 			
T=1.035	 			
				100

••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••		•••••
••••			•••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••
						•••••		•••••			
••••			••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••	•••••
						•••••		•••••			
••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••		•••••
						• • • • • • • • • • • • • • • • • • • •		•••••			
••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••
						• • • • • • • • • • • • • • • • • • • •		•••••			
••••	•	•	••••••	••••••	••••••	•••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
••••			•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••		
••••			••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	•••••
			•••••			•••••		•••••			
••••	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	
						•••••		•••••			•••••
••••		•••••••	••••••	••••••	••••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	•••••
••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	•••••
											195

9 The lines l and m have vector equations

$$\mathbf{r} = -\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} - \mathbf{k})$$
 and $\mathbf{r} = 5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} + \mathbf{k})$

respectively, where a and b are constants.

(a)	Given that l and m intersect, show that $2b - a = 4$.	[4]

e values, find the position	vector of the point of in	
	vector of the point of in	tersection of l and m
	vector of the point of in	
		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2
e values, find the position		[2

10 The complex number $-1 + \sqrt{7}i$ is denoted by u. It is given that u is a root of the equation

$$2x^3 + 3x^2 + 14x + k = 0,$$

where k is a real constant.

(a)	Find the value of k .	[3]
(b)	Find the other two roots of the equation.	[4]

(c) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying the equation |z - u| = 2. [2]

(d)	Determine the greatest value of $\arg z$ for points on this locus, giving your answer in radians. [2]