| | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• | |---|---------|--------|--------|---|---|---|---|---|-------| | | ••••• | ••••• | | | | | | | ••••• | | | | | | | | | | | | | • | •••••• | ••••• | • | • | •••••• | • | •••••• | • | ••••• | •••••• | ••••••• | •••••• | • | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• | | | ••••• | ••••• | ••••• | ••••• | ••••• | •••••• | • | ••••• | • | ••••• | •••••• | ••••• | | | | | | | | | | | ••••• | | | | | | | | | | | | | • | ••••• | ••••• | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | • | ••••• | ••••• | ••••• | ••••• | ••••• | • | ••••• | ••••• | •••••• | ••••• | | ••••• | • | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | • | • | | | ••••• | | | | | | | | | | | | | •••••• | ••••••• | •••••• | • | • | ••••••• | • | •••••• | •••••• | ••••• | •••••• | •••••• | ••••• | | ••••• | •••••• | ••••• | •••••• | ••••• | ••••• | | | | | | | | | | | ••••• | | | | | | | | | | 33 44 | | | •••••• | •••••• | ••••• | | • | •••••• | • | | | | | | | | | | | | | | 101 | |) | State the set of values of x for which the expansion is valid. | |---|--| | | | | | | | | | | | | | | | | •••••• | |--------| |
 | |
 | |
 | | | |
 | | | | | | ••••• | | | | | | | | | |
 | | | | | | | | | |
 | | | | ••••• | | | | | | | | | | | | | | | 4 The variables x and y satisfy the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{1+x^2},$$ and y = 2 when x = 0. | Solve the differential equation, obtaining a simplified expression for y in terms of x . | [7] | |--|--------| | | •••••• | | | | | | | | | •••••• | | | | | | | | | | | | •••••• | | | •••••• | | | | | | •••••• |
 | |--------| | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | | | |
 | |
 | | | | | | | | | | | | | |
00 | | Find the values of a and b . | [5 | |----------------------------------|-----| 000 | | When a and b have these values, factorise $p(x)$ completely. | [3 | |--|--------| | | •••••• | ••••• | - 3E | | | | 6 Let $I = \int_0^3 \frac{27}{(9+x^2)^2} dx$. | (a) | Using the substitution $x = 3 \tan \theta$, show that $I = \int_0^{\frac{1}{4}}$ | $\cos^2\theta \mathrm{d}\theta. \tag{4}$ | |-----|---|--| (b) | Hence find the exact value of I . | [4] | |-----|-------------------------------------|--------| | | | | | | | | | | | •••••• | | | | | | | | | | | | ••••• | •••••• | | | | •••••• | | | | •••••• | | | | | | | | •••••• | ••••• | | | | | | | | | | | | | 7 The complex number u is defined by $u = \frac{\sqrt{2} - a\sqrt{2}i}{1 + 2i}$, where a is a positive integer. | Express u in terms of a , in the form $x + iy$, where x and y are real and express u in terms of u , in the form u in the form u is u in the form | 3. | |---|---------| ••••• | ••••• | ••••• | | | | | | | | | 1777-34 | | | | It is now given that a = 3. | | | ••••• | ••••••• | ••••• | ••••• | • | • | |---------------------------------|--|--|-----------------------------|--|--------------|---|---| ••••• | ••••• | •••••• | •••••• | •••••• | ••••• | • | • | | | | | | | | | ••••• | • | •••••• | | ••••• | ••••• | • | ••••• | | | ••••• | | | ••••• | ••••• | • | | | | | | | | | | | | ••••• | • | | | | •••••• | • | | | ••••• | ••••• | ••••• | ••••• | | ••••• | • | • | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the t | two square i | coots of u . Coots of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | coots of u . Coos of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i
exact value | coots of u . Coots of r and θ | Give your an | swers in th | | | Using your ans where $r>0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tage of tag | two square i | Froots of u . Coss of r and θ | Give your an | swers in th | | | Using your ans where $r>0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | coots of u . Ces of r and θ | Give your an | swers in th | | | Using your ans where $r>0$ an | wer to part (ad $-\pi < \theta \le \pi$ | b), find the tag, giving the | two square i
exact value | coots of u . Ces of r and θ | Give your an | swers in th | | | Using your ans where $r>0$ an | wer to part (ad $-\pi < \theta \le \pi$ | b), find the tag, giving the | two square i | Froots of u . Cos of r and θ | Give your an | swers in th | | | Using your ans where $r>0$ an | wer to part (ad $-\pi < \theta \le \pi$ | b), find the tag, giving the | two square i | Froots of u . Cos of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | coots of u . Coots of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | Foots of u . Ces of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | coots of u . Ces of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tat, giving the | two square i | coots of u . Ces of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag, giving the | two square i | Foots of u . Cos of r and θ | Give your an | swers in th | | | Using your ans where $r > 0$ an | wer to part ($d - \pi < \theta \le \pi$ | b), find the tag is giving the | two square i | Foots of u . Cos of r and θ | Give your an | swers in th | ne form re | 8 The equation of a curve is $x^3 + y^3 + 2xy + 8 = 0$. | (a) | Express $\frac{dy}{dx}$ in terms of x and y. | [4] | |-----|--|-----| 100 | The tangent to the curve at the point where x = 0 and the tangent at the point where y = 0 intersect at the acute angle α . | Find the exact value of $\tan \alpha$. | [\$ | |---|--------| [=1·¥· | | | | | | /00/ | 9 In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 4 units and OG = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OG respectively. The point M is the midpoint of DF. The point N on AB is such that AN = 3NB. | (a) | Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} . | [3] | |------------|--|--------| | | | | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | (b) | Find a vector equation for the line through M and N . | [2] | | | | | | | | ••••• | | | | | | | | ·••••• | | | | | | | | o(| | | Show that the length of the perpendicular from O to the line through M and N is A | 16. | [| |---|---|-------|---| | | | ••••• | • | | | | ••••• | | | | | | | | | | | | | | | ••••• | • • • • • • • | | | | ••••• | • • • • • • • • | | | | | | | | | | | | | | ••••• | • • • • • • • • | | | | ••••• | • | | | | ••••• | | | | | | | | • | | ••••• | • • • • • • • | | | | ••••• | • • • • • • • • | | | | ••••• | ••••• | | | | | | | | | | | | | | ••••• | ••••• | | | | ••••• | | | | | | | | | | | | | | | ••••• | ••••• | | | | ••••• | • • • • • • • • | | | | ••••• | • | | | | | | | | | | | | | | ••••• | • | | | | ••••• | ••••• | | | | | | | | | | | | • | | | | **10** The curve $y = x\sqrt{\sin x}$ has one stationary point in the interval $0 < x < \pi$, where x = a (see diagram). | (a) | Show that $\tan a = -\frac{1}{2}a$. | [4] | |-----|--------------------------------------|-------| | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | (b) | Verify by calculation that a lies between 2 and 2.5. [2] | |--------------|--| (c) | Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula $x_{n+1} = \pi - \tan^{-1}(\frac{1}{2}x_n)$ converges, then it converges to a , the root of the equation in part (a). [2] | (d) | Use the iterative formula given in part (c) to determine <i>a</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3] |