	and the possible values of the constant p .	[4
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		
•		•••
•		•••
•		•••
•		•••
•		•••
	FET 455	J

The diagram shows part of the curve with equation $y = p \sin(q\theta) + r$, where p, q and r are constants.

(a)	State the value of p .	[1]
(b)	State the value of q .	[1]
(c)	State the value of r .	[1]

3 An arithmetic progression has first term 4 and common difference *d*. The sum of the first *n* terms of the progression is 5863.

(a)	Show that $(n-1)d = \frac{11726}{n}$	- 8.	[1]
(b)	Given that the n th term is 139	0, find the values of n and d , g	iving the value of d as a fraction. [4]
			FI 35-4

4 (a) The curve with equation $y = x^2 + 2x - 5$ is translated by $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Find the equation of the translated curve, giving your answer in the form $y = ax^2 + bx + c$.	
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

(b) The curve with equation $y = x^2 + 2x - 5$ is transformed to a curve with equation $y = 4x^2 + 4x - 5$.

Describe fully the single transformation that has been applied. [2]

(a)	Solve the equation $6\sqrt{y} + \frac{2}{\sqrt{y}} - 7 = 0$.	[4]
	••	
		••••••
		•••••
(b)	Hence solve the equation $6\sqrt{\tan x} + \frac{2}{\sqrt{\tan x}} - 7 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.	[3
		III (25)
		700

Page 6 of 17 9709_s22_qp_13 The function f is defined by $f(x) = 2x^2 - 16x + 23$ for x < 3. (a) Express f(x) in the form $2(x+a)^2 + b$. [2]

Find the range of f.	[1]

(b)

(c)	Find an expression for $f^{-1}(x)$.	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
	e function g is defined by $g(x) = 2x + 4$ for $x < -1$.	
(d)	Find and simplify an expression for $fg(x)$.	[2]
		••••
		••••
		••••
		••••
		••••
		ġ [

The diagram shows the circle with equation $(x-2)^2 + (y+4)^2 = 20$ and with centre C. The point B has coordinates (0, 2) and the line segment BC intersects the circle at P.

(a)	Find the equation of BC .	[2]

Hence find the coordinates of P , giving your answer in exact form.	
	••••••
	••••••

The diagram shows the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$. The line y = 5 intersects the curve at the points A(1, 5) and B(16, 5).

(a)	Find the equation of the tangent to the curve at the point A .	[4]

Calculate the area of the shaded region.	

The diagram shows triangle ABC with AB = BC = 6 cm and angle ABC = 1.8 radians. The arc CD is part of a circle with centre A and ABD is a straight line.

(a)	Find the perimeter of the shaded region.	[5]
		•••••
		••••
		••••
		•••••
		••••
		••••
		••••

Find the area of the shaded region.	[3
	F=7.04 v
	/oo\

10 The function f is defined by $f(x) = (4x + 2)^{-2}$ for $x > -\frac{1}{2}$.

	Find $\int_{1}^{\infty} f(x) dx$.	
••		
••		
••		
••		•••••
••		
••		••••••
••		
••		
••		

A point is moving along the curve y = f(x) in such a way that, as it passes through the point A, its y-coordinate is **decreasing** at the rate of k units per second and its x-coordinate is **increasing** at the rate of k units per second.

(b)	Find the coordinates of A .	[6]

the (equation $y = -\frac{m}{x}$. There is a single point P on the curve such that the straight line is a tangent to curve at P.			
(a)	Find the coordinates of P , giving the y -coordinate in terms of m .	[6		

The normal to the curve at P intersects the curve again at the point Q.

 60