| | and the possible values of the constant p . | [4 | |---|---|-----| | • | | ••• | | | | | | | | | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | | | | | | | | | | | | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | | | | | | | | | • | | | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | • | | ••• | | | | | | | FET 455 | J | The diagram shows part of the curve with equation $y = p \sin(q\theta) + r$, where p, q and r are constants. | (a) | State the value of p . | [1] | |-----|--------------------------|-----| | | | | | | | | | | | | | (b) | State the value of q . | [1] | (c) | State the value of r . | [1] | | | | | | | | | | | | | 3 An arithmetic progression has first term 4 and common difference *d*. The sum of the first *n* terms of the progression is 5863. | (a) | Show that $(n-1)d = \frac{11726}{n}$ | - 8. | [1] | |-----|--------------------------------------|---|---| (b) | Given that the n th term is 139 | 0, find the values of n and d , g | iving the value of d as a fraction. [4] | FI 35-4 | | | | | | 4 (a) The curve with equation $y = x^2 + 2x - 5$ is translated by $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. | Find the equation of the translated curve, giving your answer in the form $y = ax^2 + bx + c$. | | |---|------| | | | | | | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | (b) The curve with equation $y = x^2 + 2x - 5$ is transformed to a curve with equation $y = 4x^2 + 4x - 5$. Describe fully the single transformation that has been applied. [2] | (a) | Solve the equation $6\sqrt{y} + \frac{2}{\sqrt{y}} - 7 = 0$. | [4] | |-----|---|----------| | | •• | | | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | ••••• | (b) | Hence solve the equation $6\sqrt{\tan x} + \frac{2}{\sqrt{\tan x}} - 7 = 0$ for $0^{\circ} \le x \le 360^{\circ}$. | [3 | III (25) | | | | | | | | 700 | Page 6 of 17 9709_s22_qp_13 The function f is defined by $f(x) = 2x^2 - 16x + 23$ for x < 3. (a) Express f(x) in the form $2(x+a)^2 + b$. [2] | Find the range of f. | [1] | |----------------------|-----| | | | | | | | | | | | | | | | | | | **(b)** | (c) | Find an expression for $f^{-1}(x)$. | [3] | |--------------|---|------| | | | •••• | | | | | | | | •••• | | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | e function g is defined by $g(x) = 2x + 4$ for $x < -1$. | | | (d) | Find and simplify an expression for $fg(x)$. | [2] | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | •••• | | | | | | | | | | | | | | | | ġ [| The diagram shows the circle with equation $(x-2)^2 + (y+4)^2 = 20$ and with centre C. The point B has coordinates (0, 2) and the line segment BC intersects the circle at P. | (a) | Find the equation of BC . | [2] | |-----|-----------------------------|-----| Hence find the coordinates of P , giving your answer in exact form. | | |---|--------| •••••• | | | •••••• | The diagram shows the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$. The line y = 5 intersects the curve at the points A(1, 5) and B(16, 5). | (a) | Find the equation of the tangent to the curve at the point A . | [4] | |-----|--|-----| Calculate the area of the shaded region. | | |--|--| The diagram shows triangle ABC with AB = BC = 6 cm and angle ABC = 1.8 radians. The arc CD is part of a circle with centre A and ABD is a straight line. | (a) | Find the perimeter of the shaded region. | [5] | |-----|--|-------| | | | ••••• | | | | •••• | | | | •••• | | | | ••••• | •••• | | | | •••• | | | | •••• | | | | | | | | | | Find the area of the shaded region. | [3 | |-------------------------------------|----------| F=7.04 v | | | | | | /oo\ | 10 The function f is defined by $f(x) = (4x + 2)^{-2}$ for $x > -\frac{1}{2}$. | | Find $\int_{1}^{\infty} f(x) dx$. | | |----|------------------------------------|--------| | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | •• | | ••••• | | •• | | | | | | | | | | | | •• | | •••••• | | •• | | | | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | •• | | | | | | | A point is moving along the curve y = f(x) in such a way that, as it passes through the point A, its y-coordinate is **decreasing** at the rate of k units per second and its x-coordinate is **increasing** at the rate of k units per second. | (b) | Find the coordinates of A . | [6] | |------------|-------------------------------|-----| the (| equation $y = -\frac{m}{x}$. There is a single point P on the curve such that the straight line is a tangent to curve at P. | | | | |-------|--|----|--|--| | (a) | Find the coordinates of P , giving the y -coordinate in terms of m . | [6 | The normal to the curve at P intersects the curve again at the point Q. |
 | |--------| |
 | |
 | |
 | | | | | | | | | |
 | |
 | | | | | |
 | | | | | | | | | |
 | |
 | | | | | |
 | | | | | | | | | |
60 |