
Find the two possible values of the speed of P after the collision.	[4
	•••••
	•••••
	•••••
	••••••
	•••••
	F23 (56)

(a)	Find the total mass of the cyclist and her bicycle.	[3
		• • • • • • • • • • • • • • • • • • • •
cons	cyclist comes to a straight hill inclined at an angle θ above the horizontal. She assistant speed 3 m s ⁻¹ . She continues to work at the same rate as before and the residuaged.	ends the hill a
cons	stant speed 3 m s ⁻¹ . She continues to work at the same rate as before and the resi	ends the hill a stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i
cons	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the residuaged.	stance force i

3

Four coplanar forces act at a point. The magnitudes of the forces are 20 N, 30 N, 40 N and F N. The directions of the forces are as shown in the diagram, where $\sin \alpha^{\circ} = 0.28$ and $\sin \beta^{\circ} = 0.6$.

Given that the forces are in equilibrium, find F and θ .	[6]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

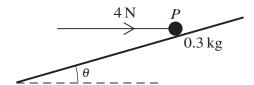
(a)	Show that $u = 22$.	[2
		•••••
		•••••
		••••••
		•••••
		•••••
		•••••
		••••••
		•••••
(b)	The height of the particle above the ground is more than h m for a period of 3.6 s.	
	Find h .	[4
		•••••

A car of mass 1400 kg is towing a trailer of mass 500 kg down a straight hill inclined at an angle of 5° 5 to the horizontal. The car and trailer are connected by a light rigid tow-bar. At the top of the hill the speed of the car and trailer is $20 \, \mathrm{m \, s^{-1}}$ and at the bottom of the hill their speed is $30 \, \mathrm{m \, s^{-1}}$. (a) It is given that as the car and trailer descend the hill, the engine of the car does 150 000 J of work, and there are no resistance forces. Find the length of the hill. [5]

Find the tension in the tow-bar between the car and trailer.	[4
	•••••
	•••••
	•••••
	[=1.44]

A particle moves in a straight line and passes through the point A at time t = 0. The velocity of the particle at time t s after leaving A is v m s⁻¹, where

$$v = 2t^2 - 5t + 3.$$


(a)	Find the times at which the particle is instantaneously at rest. Hence or otherwise find the minimum velocity of the particle. [4]

(b) Sketch the velocity-time graph for the first 3 seconds of motion.

[3]

											[3
••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••
· • • •					•••••						•••••
• • • •	•••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••
•••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •
••••		•••••	•••••	•••••	•••••	•••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
• • • •		•••••	•••••	••••••	•••••	•••••		•••••	••••••	•••••	•••••
•••		•••••			•••••	•••••			•••••		•••••
• • • •	••••••	••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••
				•••••	•••••				•••••		
••••	•••••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••
					•••••						• • • • • • • • • • • • • • • • • • • •
• • • •	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
					•••••	•••••					•••••
••••	••••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••
••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	•••••		•••••	••••••		•••••
		•••••			•••••	•••••					
											60

A particle P of mass 0.3 kg rests on a rough plane inclined at an angle θ to the horizontal, where $\sin \theta = \frac{7}{25}$. A horizontal force of magnitude 4 N, acting in the vertical plane containing a line of greatest slope of the plane, is applied to P (see diagram). The particle is on the point of sliding up the plane.

(a)	Show that the coefficient of friction between the particle and the plane is $\frac{3}{4}$. [4]
	force acting horizontally is replaced by a force of magnitude 4N acting up the plane parallel to a of greatest slope.
(b)	Find the acceleration of P . [3]

(c)	Starting with <i>P</i> at rest, the force of 4 N parallel to the plane acts for 3 seconds a	nd is then removed.
	Find the total distance travelled until P comes to instantaneous rest.	[3]