| coefficients | $(3x)^{\frac{2}{3}}$ in ascenda. | <br>-     |        | -     |       |       |
|--------------|----------------------------------|-----------|--------|-------|-------|-------|
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      | •••••  |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      | •••••  | ••••• |       |       |
|              |                                  | <br>      | •••••  |       | ••••• |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      | •••••  |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      | •••••  |       |       | ••••• |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      | •••••  |       |       | ••••• |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>      |        |       |       |       |
|              |                                  | <br>••••• | •••••  | ••••• |       | ••••• |
| ••••••       |                                  | <br>••••• | •••••• | ••••• | ••••• | ••••• |
| ••••••       |                                  | <br>••••• | •••••• | ••••• | ••••• | ••••• |
|              |                                  | <br>      | •••••• |       | ••••• |       |
|              |                                  | <br>      | •••••• |       | ••••• |       |
|              |                                  | <br>      |        |       |       |       |

| ••••••                                                                                |
|---------------------------------------------------------------------------------------|
| •••••                                                                                 |
| •••••                                                                                 |
| <br>                                                                                  |
|                                                                                       |
|                                                                                       |
| •••••                                                                                 |
|                                                                                       |
|                                                                                       |
| <br>                                                                                  |
|                                                                                       |
|                                                                                       |
| ••••••                                                                                |
| ••••••                                                                                |
| •••••                                                                                 |
| <br>                                                                                  |
|                                                                                       |
|                                                                                       |
|                                                                                       |
| Solve the equation $4^x = 3 + 4^{-x}$ . Give your answer correct to 3 decimal places. |

**3** The parametric equations of a curve are

$$x = t + \ln(t+2),$$
  $y = (t-1)e^{-2t},$ 

where t > -2.

| (a)          | Express $\frac{dy}{dx}$ in terms of t, simplifying your answer.           | [5]       |
|--------------|---------------------------------------------------------------------------|-----------|
|              |                                                                           |           |
|              |                                                                           | •••••     |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
| ( <b>b</b> ) | Find the exact <i>y</i> -coordinate of the stationary point of the curve. | [2]       |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           |           |
|              |                                                                           | <b></b> [ |
|              |                                                                           |           |

[3]

4 Let  $f(x) = \frac{15 - 6x}{(1 + 2x)(4 - x)}$ .

| (a) | Express $f(x)$ in partial fractions. |
|-----|--------------------------------------|
|     |                                      |

**(b)** Hence find  $\int_{1}^{2} f(x) dx$ , giving your answer in the form  $\ln \left(\frac{a}{b}\right)$ , where a and b are integers. [4]

| τ | $\tan^4 \theta + 2 \tan^2 \theta - 7 = 0.$ |        |
|---|--------------------------------------------|--------|
|   |                                            |        |
|   |                                            |        |
|   |                                            |        |
|   |                                            | •••••  |
| • |                                            | •••••• |
| • |                                            | •••••  |
|   |                                            | •••••  |
|   |                                            |        |
|   |                                            |        |
|   |                                            |        |
|   |                                            |        |
| • |                                            | •••••• |
| • |                                            | •••••  |
| • |                                            | •••••  |
| • |                                            |        |
|   |                                            |        |
|   |                                            |        |
|   |                                            |        |
|   |                                            |        |
| • |                                            | •••••• |
| • |                                            | •••••  |
| • |                                            | •••••  |
| • |                                            |        |
|   |                                            | •••••  |
|   |                                            |        |
|   |                                            |        |
|   |                                            | 4      |

| <br> |  |
|------|--|
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
|      |  |

6 (a) By sketching a suitable pair of graphs, show that the equation  $\cot \frac{1}{2}x = 1 + e^{-x}$  has exactly one root in the interval  $0 < x \le \pi$ . [2]

| )) | Verify by calculation that this root lies between 1 and 1.5. | [2]   |
|----|--------------------------------------------------------------|-------|
|    |                                                              |       |
|    |                                                              | ••••  |
|    |                                                              |       |
|    |                                                              | ••••  |
|    |                                                              | ••••  |
|    |                                                              | ••••  |
|    |                                                              | ••••• |
|    |                                                              | ••••  |
|    |                                                              |       |
|    |                                                              |       |

| places | . Give the | result of ea                            | ch iteratio | on to 4 de                              | ecimal pla | ices.                                   |                                         |        |        |
|--------|------------|-----------------------------------------|-------------|-----------------------------------------|------------|-----------------------------------------|-----------------------------------------|--------|--------|
|        | •••••      | •••••                                   |             | •••••                                   | •••••      | •••••                                   | •••••                                   |        | •••••  |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
| •••••• |            |                                         | ••••••      | ••••••                                  | •••••      | ••••••                                  | ••••••                                  | •••••• | •••••  |
|        |            |                                         | •••••       | • • • • • • • • • • • • • • • • • • • • | •••••      | •••••                                   | •••••                                   | •••••• |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
| •••••  | •          | •                                       | ••••••      | ••••••                                  | ••••••     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••• | •••••• |
|        |            |                                         | •••••       | •••••                                   | •••••      | ••••••                                  | •••••                                   | •••••  | •••••  |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
|        |            |                                         |             |                                         |            |                                         |                                         | •••••  |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
| •••••• |            | • • • • • • • • • • • • • • • • • • • • | •••••       | ••••••                                  | •••••      | ••••••                                  | •••••                                   | •••••• | •••••  |
|        |            |                                         | •••••       | •••••                                   |            |                                         | •••••                                   | •••••  |        |
|        |            |                                         |             |                                         |            |                                         |                                         | •••••  |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
| •••••• | •          | •                                       | ••••••      | ••••••                                  | ••••••     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••• | •••••• |
| •••••• |            | • • • • • • • • • • • • • • • • • • • • | •••••       | •••••                                   | •••••      | •••••                                   | •••••                                   | •••••  | •••••  |
|        |            |                                         |             | •••••                                   |            |                                         |                                         |        |        |
|        |            |                                         |             |                                         |            |                                         |                                         | •••••  |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
| •••••• | •••••      | • • • • • • • • • • • • • • • • • • • • | •••••       | ••••••                                  | •••••      | •••••                                   | •••••                                   | •••••• | •••••  |
| •••••• |            |                                         | •••••       | •••••                                   | •••••      | •••••                                   | •••••                                   | •••••  | •••••  |
|        |            |                                         |             |                                         |            |                                         |                                         | •••••  |        |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |
|        |            |                                         |             | .,                                      |            |                                         |                                         |        |        |
| •••••  | •••••      | •••••                                   | •••••       | •••••                                   | •••••      | ••••••                                  | •••••                                   | •••••  | •••••  |
|        |            |                                         |             | •••••                                   | •••••      | •••••                                   |                                         | •••••  | •••••  |
|        |            |                                         |             |                                         |            |                                         |                                         |        |        |

7



For the curve shown in the diagram, the normal to the curve at the point P with coordinates (x, y) meets the x-axis at N. The point M is the foot of the perpendicular from P to the x-axis.

The curve is such that for all values of x in the interval  $0 \le x < \frac{1}{2}\pi$ , the area of triangle PMN is equal to  $\tan x$ .

| (a) | (i)  | Show that $\frac{MN}{y} = \frac{dy}{dx}$ .                                                         | [1]  |
|-----|------|----------------------------------------------------------------------------------------------------|------|
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     | (ii) | Hence show that x and y satisfy the differential equation $\frac{1}{2}y^2\frac{dy}{dx} = \tan x$ . | [2]  |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |
|     |      |                                                                                                    | •••• |

|        | g y in terms of |       |                                         |         |                                         |        |       |                                         |
|--------|-----------------|-------|-----------------------------------------|---------|-----------------------------------------|--------|-------|-----------------------------------------|
| •••••  |                 |       |                                         | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  |       |                                         |
|        |                 |       |                                         |         | • • • • • • • • • • • • • • • • • • • • |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       | •••••                                   | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••  | •••••           | ••••• | • • • • • • • • • • • • • • • • • • • • | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••  | •••••           |       | •••••                                   | •••••   | •••••                                   | •••••  | ••••• |                                         |
|        |                 |       |                                         |         | • • • • • • • • • • • • • • • • • • • • |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••  | ••••••          |       | • • • • • • • • • • • • • • • • • • • • | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  |       | • • • • • • • • • • • • • • • • • • • • |
|        |                 |       |                                         |         | •••••                                   |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••• | •••••••         |       | ••••••                                  | ••••••• | ••••••                                  | •••••• |       | • • • • • • • • • • • • • • • • • • • • |
| •••••  |                 |       |                                         |         | • • • • • • • • • • • • • • • • • • • • | •••••  |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••  |                 |       | • • • • • • • • • • • • • • • • • • • • |         | • • • • • • • • • • • • • • • • • • • • | •••••  |       |                                         |
|        |                 |       |                                         |         | • • • • • • • • • • • • • • • • • • • • |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••  |                 |       | • • • • • • • • • • • • • • • • • • • • | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  |       | • • • • • • • • • • • • • • • • • • • • |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••• | •••••           |       | • • • • • • • • • • • • • • • • • • • • | ••••••  | •••••                                   | •••••  | ••••• | • • • • • • • • • • • • • • • • • • • • |
|        |                 |       |                                         |         | • • • • • • • • • • • • • • • • • • • • |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
| •••••• | •••••••         |       | ••••••                                  | ••••••• | ••••••                                  | •••••• |       | • • • • • • • • • • • • • • • • • • • • |
| •••••  |                 |       | • • • • • • • • • • • • • • • • • • • • | •••••   | • • • • • • • • • • • • • • • • • • • • | •••••  |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 | ,     |                                         |         |                                         |        |       |                                         |
| •••••  |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |
|        |                 |       |                                         |         |                                         |        |       |                                         |

8



The diagram shows the curve  $y = \frac{\ln x}{x^4}$  and its maximum point M.

| Find the exact coord | inates of <i>M</i> . |       | <br> | [4] |
|----------------------|----------------------|-------|------|-----|
|                      |                      |       | <br> |     |
|                      |                      |       | <br> |     |
|                      |                      | ••••• | <br> |     |
|                      |                      |       | <br> |     |
|                      |                      | ••••• | <br> |     |
|                      |                      |       | <br> |     |
|                      |                      |       | <br> |     |

| (b) | By using integration by parts, show that for all $a > 1$ , | $\int_{1}^{a} \frac{\ln x}{x^4}  \mathrm{d}x < \frac{1}{9}.$ [6] |  |
|-----|------------------------------------------------------------|------------------------------------------------------------------|--|
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |
|     |                                                            |                                                                  |  |

| 9 | The quadrilateral $ABCD$ is a trapezium in which $AB$ and $DC$ are parallel.                                                | With respect to the                                               |
|---|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|   | origin O, the position vectors of A, B and C are given by $\overrightarrow{OA} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ , | $\overrightarrow{OB} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and |
|   | $\overrightarrow{OC} = 2\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}.$                                                            |                                                                   |

| (a)        | Given that $\overrightarrow{DC} = 3\overrightarrow{AB}$ , find the position vector of $D$ . | [3]   |
|------------|---------------------------------------------------------------------------------------------|-------|
|            |                                                                                             |       |
|            |                                                                                             | ••••• |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             | ••••• |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
| <b>(b)</b> | State a vector equation for the line through <i>A</i> and <i>B</i> .                        | [1]   |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |
|            |                                                                                             |       |

| · • • • |  |
|---------|--|
| •••     |  |
|         |  |
|         |  |
|         |  |
| •••     |  |
| •••     |  |
|         |  |
| •••     |  |
| •••     |  |
|         |  |
| •••     |  |
| •••     |  |
| •••     |  |
| •••     |  |
|         |  |
|         |  |
|         |  |
| •••     |  |
| ••••    |  |
| •••     |  |
|         |  |
|         |  |
|         |  |
| • • • • |  |
| • • • • |  |
|         |  |
| ••••    |  |
|         |  |

| Find the other roots of this equation. |
|----------------------------------------|
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |