| <br>       |
|------------|
| <br>       |
| <br>       |
| <br>       |
| <br>       |
|            |
|            |
|            |
|            |
| <br>       |
|            |
|            |
|            |
| <br>       |
|            |
|            |
|            |
| <br>       |
|            |
|            |
|            |
| <br>       |
| <br>[=]-4- |
|            |

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities  $|z+1-i| \le 1$  and  $\arg(z-1) \le \frac{3}{4}\pi$ . [4]



|       | Explain why the graph of $y$ against $\ln x$ is a straight line and state the exact value of the line.                                                   | ie of the gradi |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          |                 |
|       |                                                                                                                                                          | ••••••          |
| It is | siven that the line intersects the very set the point where very 1.2                                                                                     |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .  Calculate the value of $A$ , giving your answer correct to 2 decimal places.   |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .                                                                                 |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |
|       | given that the line intersects the y-axis at the point where $y = 1.3$ .<br>Calculate the value of $A$ , giving your answer correct to 2 decimal places. |                 |

| Using integration by parts, find the exact value of | $\int_0^1 \tan^{-1}\left(\frac{1}{2}x\right) dx.$ | [5     |
|-----------------------------------------------------|---------------------------------------------------|--------|
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   | •••••  |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   | •••••• |
|                                                     |                                                   | •••••  |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   | •••••  |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   | •••••  |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |
|                                                     |                                                   |        |

| exact. | square roots o | i u, giving y | our answer | is in the for | III <i>u</i> + 10, w | nere a ana | [5    |
|--------|----------------|---------------|------------|---------------|----------------------|------------|-------|
| •••••  |                | •••••         |            |               | •••••                |            | ••••• |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               | ••••••               |            |       |
|        |                | ••••••        |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
| •••••  |                |               | ••••••     | ••••••        | ••••••               | •••••      |       |
| •••••  |                |               |            |               | ••••••               |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               | •••••      |               |                      |            |       |
| •••••  |                |               |            |               | •••••                |            |       |
|        | ,              |               |            |               |                      |            |       |
| •••••  |                |               |            |               | •••••                |            | ••••• |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               | •••••                |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               | •••••                |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |
|        |                |               |            |               |                      |            |       |

| ` , | Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$ .                                                       | [3] |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
| (b) | Hence show that $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$ | [4] |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |
|     |                                                                                                                     |     |

| By setting up of $x$ . | and solving a c | lifferential e | quation, fir | nd the equat | ion of the cur | ve, expressin | g y in terms [7] |
|------------------------|-----------------|----------------|--------------|--------------|----------------|---------------|------------------|
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
| •••••                  |                 | •••••••        |              |              |                |               | •••••            |
| ••••••                 |                 |                |              |              |                |               | •••••            |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              | •••••        |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               | •••••            |
|                        |                 |                |              |              |                |               | •••••            |
| ••••••                 |                 | ••••••         |              | ,            | •••••          |               | •••••            |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |
|                        |                 |                |              | ••••••       |                |               | •••••            |
| ••••••                 |                 |                |              |              |                |               |                  |
|                        |                 |                |              |              |                |               |                  |

| •••••  |
|--------|
|        |
|        |
| <br>   |
| <br>   |
| <br>   |
|        |
|        |
|        |
| <br>   |
| •••••  |
| •••••• |
| •••••• |
| •••••• |
| •••••• |
|        |
|        |
| 100    |

|        | the <i>x</i> -coordinates where appropria | ry points of the c | eurve. Give | your answers | s correct to | 3 decim |
|--------|-------------------------------------------|--------------------|-------------|--------------|--------------|---------|
| •••••• |                                           | <br>               |             |              |              |         |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              |              | •••••   |
| •••••  |                                           | <br>               |             |              |              | •••••   |
|        |                                           | <br>               | •••••       |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••• |                                           | <br>•••••          |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              |              | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••• |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>               |             |              | •••••        | •••••   |
| •••••  |                                           | <br>•••••          |             |              | •••••        | •••••   |
|        |                                           | <br>               |             |              | •••••        |         |
| •••••  |                                           | <br>               |             |              |              |         |
| •••••  |                                           | <br>               |             |              |              |         |
|        |                                           | <br>               |             |              |              |         |
|        |                                           |                    |             |              |              |         |

| ••••••             |
|--------------------|
| <br>••••••         |
| <br>               |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
| ••••••             |
|                    |
|                    |
| <i>f</i> • • • • • |

9 Let  $f(x) = \frac{14 - 3x + 2x^2}{(2+x)(3+x^2)}$ .

| Express $f(x)$ in partial fractions. |           |
|--------------------------------------|-----------|
|                                      | <br>      |
|                                      |           |
|                                      | •••••     |
|                                      | <br>      |
|                                      |           |
|                                      | <br>••••• |
|                                      | <br>      |
|                                      |           |
|                                      |           |
|                                      | <br>••••• |
|                                      | <br>      |
|                                      |           |
|                                      | <br>••••• |
|                                      | <br>      |
|                                      |           |
|                                      | •••••     |
|                                      | <br>      |
|                                      |           |
|                                      | •••••     |
|                                      | <br>      |
|                                      | <br>      |
|                                      |           |
|                                      | <br>      |
|                                      | <br>      |
|                                      |           |
|                                      | <br>••••• |
|                                      | <br>      |
|                                      |           |
|                                      | <br>••••• |
|                                      | <br>      |
|                                      |           |
|                                      | J - 3     |
|                                      | <br>J.    |
|                                      | 7000-1    |

|       |        |        |                                         |                                         |                                         |                                         |        |                                         | [5                                      |
|-------|--------|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------|-----------------------------------------|-----------------------------------------|
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••• | •••••  | •••••••                                 | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|       |        | ••••   |                                         |                                         |                                         |                                         |        |                                         |                                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • | •••••  |        |                                         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | •••••                                   | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••  | •••••  | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • •                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••  |        | •                                       | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •                                       | •••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • •                       |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • | •••••  |        |                                         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | •••••                                   | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • | •••••  | •••••  | •••••                                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • •                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   |        |        |                                         |                                         | •                                       |                                         |        | •                                       | •••••                                   |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • •                       |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   |        |        |                                         | • • • • • • • • • • • • • • • • • • • • |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••  | •••••  |                                         |                                         | •••••                                   |                                         |        | •••••                                   | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • | •••••  | •••••  | •••••                                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••• | •••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••••                                  | •                                       | •••••• | • • • • • • • • • • • • • • • • • • • • | •••••                                   |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
|       |        | •••••  |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • •                       |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   |        | •••••  |                                         |                                         |                                         |                                         |        |                                         | • • • • • • • • • • • • • • • • • • • • |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| • • • |        | •••••  |                                         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • •                       |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••  | •••••  | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         | •••••  |                                         |                                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         |                                         |
| •••   | •••••  | •••••  | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••  |                                         |                                         |
|       |        |        |                                         |                                         |                                         |                                         |        |                                         | 700                                     |



The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

| (a) | Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that $x$ satisfies the equation $x = 0.9(2 - \cos x) \sin x$ . [3] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
| (b) | Verify by calculation that $x$ lies between 0.5 and 0.7. [2]                                                                                                       |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |

| (c) | Show that if a sequence of values in the interval $0 < x < \frac{1}{2}\pi$ given by the iterative formula                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
|     | $x_{n+1} = \cos^{-1}\left(2 - \frac{x_n}{0.9\sin x_n}\right)$                                                                            |
|     | converges, then it converges to the root of the equation in part (a). [2]                                                                |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
| (d) | Use this iterative formula to determine <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3] |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |
|     |                                                                                                                                          |

| a) | Show that $OA = OB$ and use a scalar product to calculate angle $AOB$ in degrees. | [4                                      |
|----|-----------------------------------------------------------------------------------|-----------------------------------------|
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   | • • • • • • • • • • • • • • • • • • • • |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   |                                         |
|    |                                                                                   | 34                                      |

| ] | Find the possible position vectors of $P$ . | [6      |
|---|---------------------------------------------|---------|
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
| ٠ |                                             | ••••••  |
| ٠ |                                             |         |
|   |                                             | •••••   |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
| ٠ |                                             |         |
|   |                                             | •••••   |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
| • |                                             | ••••••• |
| ٠ |                                             | ••••••  |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
| • |                                             | ••••••  |
| ٠ |                                             |         |
|   |                                             |         |
|   |                                             |         |
|   |                                             |         |
| ٠ |                                             | 127.04  |
|   |                                             |         |