 [FT:32]

Your workin	ng should s	now clearl	y tnat the	equation	i nas only	one real i	oot.		[:
									•••••
			•••••						•••••
									•••••
		•••••					•••••	•••••	
•••••	••••								
•••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••
•••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••
••••••		•••••					••••••		•••••
									•••••
									•••••
	•••••								
	•••••								
•••••••	•••••	••••••	••••••••	••••••	•••••••	•••••	••••••	•••••••••	•••••
•••••	•••••	•••••	••••••	•••••	•••••••	•••••	••••••	••••••	••••
••••••		•••••					••••••		•••••
•••••		•••••							

3	(a)	Given that $\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$, show that $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$. [4]	
	(b)	Hence solve the equation	
		$\cos(x - 30^{\circ}) = 2\sin(x + 30^{\circ}),$ for $0^{\circ} < x < 360^{\circ}$. [2]	

4	(a)	Prove that $\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$.	[2]	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
	(b)	Hence find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1 - \cos 2\theta}{1 + \cos 2\theta} d\theta.$	[4]	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
			••••••	
			99	

in an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .		Solve the equation $z^2 - 2piz - q = 0$, where p and q are real constants.	[2
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			•••••
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
			•••••
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			•••••
In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			•••••
A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .			
			he distinct poin
	4 ar	ad B .	
	4 ar	ad B .	
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2
	4 ar	and B . Given that A and B lie on the imaginary axis, find a relation between p and q .	[2

Given instead that triangle OAB is equilateral, express q in terms of p .	[3
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••

6 The parametric equations of a curve are

$$x = \ln(2 + 3t),$$
 $y = \frac{t}{2 + 3t}.$

•	•••••
•	••••••
	•••••
•	••••••
•	••••••
•	 ••••••
	 •••••
	11/3
•	

• • • •	••••
••••	 ••••
••••	••••
••••	••••
••••	 ••••
••••	••••
••••	••••
••••	••••
••••	••••
••••	••••
••••	••••
••••	••••
••••	••••
••••	 ••••
••••	
• • • •	

7

The diagram shows the curve $y = \frac{\tan^{-1} x}{\sqrt{x}}$ and its maximum point M where x = a.

(a) Show that a satisfies the equation

$a = \tan\left(\frac{2a}{1+a^2}\right)$).	[4]

••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	••••
••••	•••••					•••••			•••••		•••••	••••
	•••••											
••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••	••••••		••••
••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••
••••	• • • • • • • • • • • • • • • • • • • •	••••••	•	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••	••••••	•••••	••••
• • • •	•••••			•••••	•••••	•••••			•••••	•••••	•••••	••••
Us pla	e an it aces. C	erative live the	formula result (a based of each i	on the education t	quation i to 4 decir	n part (a) nal place) to deter s.	mine a	correct	to 2 de	ecir
••••					••••••	••••••	••••••				•••••	••••
••••												

With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$. The line l has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

and the acute angle between the directions of AB and l .	
	••••••
	•••••
	•••••
	/

(a)	Find the exact coordinates of the stationary point.	[5

Show that $\int_{1}^{8} y dx = 18 \ln 2 - 9.$	
	1000

Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x. [11]	The variables x and t satisfy the differential equation $\frac{dx}{dt} = x^2(1+2x)$, and $x = 1$ when $t = 0$.
	Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x . [11]

/oo\