|
 | |-------------| | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | |
 | |
 | | | | | |
 | |
 | | | | | |
 | |
 | | | |
 | |
 | |
[FT:32] | | | | Your workin | ng should s | now clearl | y tnat the | equation | i nas only | one real i | oot. | | [: | |-------------|-------------|------------|------------|----------|------------|------------|--------|-----------|--------| | | | | | | | | | | ••••• | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | ••••• | | | | ••••• | | | | | ••••• | ••••• | ••••• | •••• | ••••• | ••••• | ••••• | •••••• | ••••• | •••••• | •••••• | •••••• | •••••• | •••••• | | ••••• | ••••• | ••••• | •••••• | ••••• | •••••• | •••••• | •••••• | •••••• | ••••• | | •••••• | | ••••• | | | | | •••••• | | ••••• | | | | | | | | | | | ••••• | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | ••••• | ••••••• | ••••• | •••••• | •••••••• | •••••• | ••••••• | ••••• | •••••• | ••••••••• | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••• | ••••••• | ••••• | •••••• | •••••• | •••• | | •••••• | | ••••• | | | | | •••••• | | ••••• | | ••••• | | ••••• | 3 | (a) | Given that $\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$, show that $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$. [4] | | |---|------------|---|--| (b) | Hence solve the equation | | | | | $\cos(x - 30^{\circ}) = 2\sin(x + 30^{\circ}),$ for $0^{\circ} < x < 360^{\circ}$. [2] | 4 | (a) | Prove that $\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$. | [2] | | |---|-----|--|--------|--| | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | (b) | Hence find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1 - \cos 2\theta}{1 + \cos 2\theta} d\theta.$ | [4] | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | | | 99 | | | in an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | Solve the equation $z^2 - 2piz - q = 0$, where p and q are real constants. | [2 | |--|------|--|------------------| | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | ••••• | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | | | | ••••• | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | ••••• | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | ••••• | | A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . | | | | | | | | he distinct poin | | | 4 ar | ad B . | | | | 4 ar | ad B . | | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | | 4 ar | and B . Given that A and B lie on the imaginary axis, find a relation between p and q . | [2 | | Given instead that triangle OAB is equilateral, express q in terms of p . | [3 | |---|--------| •••••• | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | ••••• | | | | | | | | | •••••• | | | | | | | | | | **6** The parametric equations of a curve are $$x = \ln(2 + 3t),$$ $y = \frac{t}{2 + 3t}.$ | • | ••••• | |---|------------| | | | | |
 | | | | | • | •••••• | | |
 | | | ••••• | | | | | |
 | | | | | • | •••••• | | • | •••••• | | | | | | | | | | | |
 | | |
 | | | | | | | | • |
•••••• | | |
••••• | | | | | | | | | | | | 11/3 | | • | | | • • • • | •••• | |---------|----------| | | | | | | | •••• |
•••• | | | | | | | | •••• | •••• | | | | | •••• | •••• | | | | | | | | •••• |
•••• | | | | | | | | •••• | •••• | | | | | •••• | •••• | | |
 | | | | | •••• | •••• | | | | | | | | •••• | •••• | | | | | •••• | •••• | | |
 | | | | | •••• | •••• | | | | | •••• | •••• | | •••• | •••• | | | | | •••• |
•••• | | | | | | | | •••• | | | | | | • • • • | | 7 The diagram shows the curve $y = \frac{\tan^{-1} x}{\sqrt{x}}$ and its maximum point M where x = a. (a) Show that a satisfies the equation | $a = \tan\left(\frac{2a}{1+a^2}\right)$ |). | [4] | |---|----|-----| | | | | |
 •••• | ••••• | | • | ••••• | •••••• | •••••• | • | •••••• | ••••• | •••••• | ••••• | •••• | |-----------|---|---------------------|---|----------------------|--------------------|---|---|------------------|--------|---------|---|------| | •••• | ••••• | | | | | ••••• | | | ••••• | | ••••• | •••• | | | ••••• | •••• | • | •••••• | • | ••••• | ••••• | • | • | ••••••• | ••••• | •••••• | | •••• | | •••• | • | | | ••••• | ••••• | • | • | | ••••• | ••••• | • | •••• | •••• | • | •••••• | • | ••••• | •••••• | • | • | ••••••• | ••••• | •••••• | ••••• | •••• | | • • • • | ••••• | | | ••••• | ••••• | ••••• | | | ••••• | ••••• | ••••• | •••• | Us
pla | e an it
aces. C | erative
live the | formula
result (| a based
of each i | on the education t | quation i
to 4 decir | n part (a)
nal place |) to deter
s. | mine a | correct | to 2 de | ecir | •••• | | | | | •••••• | •••••• | •••••• | | | | ••••• | •••• | | •••• | With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$. The line l has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. | and the acute angle between the directions of AB and l . | | |--|--------| •••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | / | |
 | |------| |
 | | | | | | | | | | | | | |
 | |
 | | | | | | | | | | | | | |
 | |
 | | | | | | | | | |
 | | | | | | (a) | Find the exact coordinates of the stationary point. | [5 | |-----|---|----| Show that $\int_{1}^{8} y dx = 18 \ln 2 - 9.$ | | |--|-------------| 1000 | | | | | Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x. [11] | The variables x and t satisfy the differential equation $\frac{dx}{dt} = x^2(1+2x)$, and $x = 1$ when $t = 0$. | |---|--| | | Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x . [11] |
 | |------| |
 | | | | |
 | | | | | | | | | | | | | | | | | | /oo\ |