Find $f(x)$.]
		 P

Find the maximum possible value of the constant a .	[4
	FET 434 s

the line touches t	values of the con he curve.	istant <i>m</i> , and t	ne correspond	ing coordinate	s of the poin	[6
						•••••
				•••••	•••••	
				•••••		
						•••••
				•••••		
				•••••		•••••
				•••••		
						134

4 (a) Show that the equation

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

where k is a constant, may be expressed as

$1 + \cos x - L$	[2]
$\frac{1-\cos x}{1-\cos x}=k.$	[2]

b)	Hence express $\cos x$ in terms of k .	[2]
		•••••
		•••••

Hence solve the equation	$\frac{\tan x + \sin x}{\tan x - \sin x} = 4 \text{ for } -\pi < x < \pi.$	[2]
•••••	•••••••••••••••••••••••••••••••	•••••
•••••		• • • • • • • • • • • • • • • • • • • •

(c)

5

The diagram shows a triangle ABC, in which angle $ABC = 90^{\circ}$ and AB = 4 cm. The sector ABD is part of a circle with centre A. The area of the sector is 10 cm^2 .

(a)	Find angle BAD in radians.	[2]
(b)	Find the perimeter of the shaded region.	[4]

6 Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$f(x) = x^2 - 2x + 5,$$

$$g(x) = x^2 + 4x + 13.$$

(a)	By first expressing each of $f(x)$ and $g(x)$ in completed square form, express $g(x)$ in the form $f(x+p)+q$, where p and q are constants. [4]
(b)	Describe fully the transformation which transforms the graph of $y = f(x)$ to the graph of $y = g(x)$. [2]

(a)	Write down the first four terms of the expansion, in ascending powers of x , of $(a - x)^6$.
(b)	Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a-x)^6$ is -20 , find in exact for the possible values of the constant a .

8 Functions f and g are defined as follows:

f:
$$x \mapsto x^2 - 1$$
 for $x < 0$,
g: $x \mapsto \frac{1}{2x+1}$ for $x < -\frac{1}{2}$.

_	Solve the equation $fg(x) = 3$.	
•		• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •
•		••••••
•		
•		•••••
•		•••••
•		••••••
•		•••••••
•		
•		• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •
•		•••••••
•		
• •		
		6

(b)	Find an expression for $(fg)^{-1}(x)$.	[3]	
			Ī

9 (a)	A geometric progression is such that the second term is equal to 24% of the sum to infinite	ity.
	Find the possible values of the common ratio.	[3]
		· • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
		,
		••••
		,
		•••••
		/00\

(b)	An arithmetic progression P has first term a and common difference d . An arithmetic progression
	Q has first term $2(a + 1)$ and common difference $(d + 1)$. It is given that

 $\frac{5 \text{th term of } P}{12 \text{th term of } Q} = \frac{1}{3} \quad \text{and} \quad \frac{\text{Sum of first 5 terms of } P}{\text{Sum of first 5 terms of } Q} = \frac{2}{3}.$

	Find the value of a and the value of d .	[6]
		••••••
		••••••
TAA!		

(a)	Show that angle $ABC = 90^{\circ}$.	[2
(b)	Hence state the coordinates of D .	[
(c)	Find an equation of the circle.	[2

The point E lies on the circumference of the circle such that BE is a diameter.

			at <i>E</i> .		
•••••		•••••	 	 	
•••••			 •••••	 ••••••	
		•••••	 	 	
•••••			 •••••	 	
•••••			 •••••	 	
•••••			 	 	
•••••			 	 	
•••••	•••••		 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
•••••			 	 	
	••••		 	 	

11

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a)	Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

The tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P.

Find the y-coordinate of P in terms of k.	[4]
shaded region is bounded by the curve, the <i>x</i> -axis	s and the lines $x = \frac{9}{4}k^2$ and $x = 4k^2$.
Find the area of the shaded region in terms of k .	[3]