,	Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$.	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
	It is given that the equation $16x^2 - 24x + 10 = k$, where k is a constant, has exactly one root	 t.
)	It is given that the equation $16x^2 - 24x + 10 = k$, where k is a constant, has exactly one root Find the value of this root.	
))		
)		
)		
)		
)		
	Find the value of this root.	
	Find the value of this root.	
	Find the value of this root.	
)	Find the value of this root.	
)	Find the value of this root.	
	Find the value of this root.	
	Find the value of this root.	i

	Describe fully the two single transformations which have been combined to give the transformation.	resultin [3
(b)	The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor x-direction.	$\frac{1}{3}$ in the
	Write down the equation of the transformed curve.	
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2
	write down the equation of the transformed curve.	[2

	A(2, k)	B(2.9, 2.8025)	C(2.99, 2.9800)	D(2.999, 2.9980)	E(3, 3)
(a)	Find k , given	ving your answer con	rrect to 4 decimal plac	ees.	[1]
(b)	Find the g	gradient of AE , giving	g your answer correct	to 4 decimal places.	[1]
	gradients o	of BE , CE and DE	, rounded to 4 decin	nal places, are 1.9748,	, 1.9975 and 1.9997
resp	state, givi		r answer, what the va	nal places, are 1.9748, lues of the four gradier	
resp	state, givi	ing a reason for you	r answer, what the va		nts suggest about the
resp	state, givi	ing a reason for you	r answer, what the va		nts suggest about the
	state, givi	ing a reason for you	r answer, what the va		nts suggest about the
resp	state, givi	ing a reason for you	r answer, what the va		nts suggest about the
resp	state, givi	ing a reason for you	r answer, what the va		nts suggest about the

$\left(2x + \frac{k}{x^2}\right)^5 \text{ is } q.$				
	$\left(\frac{1}{x^2}\right)^{-1}$			
[5	Given that $p = 6q$, find the possible values of k .			
•••••				
10010354				

9709_s21_qp_12 The function f is defined by $f(x) = 2x^2 + 3$ for $x \ge 0$. 5 (a) Find and simplify an expression for ff(x). [2] **(b)** Solve the equation $ff(x) = 34x^2 + 19$. [4]

Find the values of p and q .	[4]
	•••••
	•••••
	••••••
	•••••
	m 354

(a)	Show that l is the tangent to the circle at A .	[2
		•••••
		•••••
(b)	Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at	A. [3

(a)	Find the values of a and b . [5]
(b)	Find the sum of the first 20 terms of the arithmetic progression. [3]

9

The diagram shows part of the curve with equation $y^2 = x - 2$ and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the *x*-axis.

Find the volume obtained.	[6]
	••••••

[4	$\frac{1}{\cos x}$.	$\frac{1}{\sin x} - \frac{1}{1 + \sin x} =$	Prove the identity $\frac{1+\sin x}{1-\sin x}$

b)	Hence solve the equation	$\frac{1 + \sin x}{1 + \sin x}$	$-\frac{1-\sin x}{}=$	$= 8 \tan x \text{ for } 0 \le x \le \frac{1}{2}\pi.$	[3]
()	1	$1 - \sin x$	$1 + \sin x$	1 2 2	£- J
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		•••••			
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••
			•••••		
		•••••	• • • • • • • • • • • • • • • • • • • •		
		••••••	• • • • • • • • • • • • • • • • • • • •		•••••••
		•••••			
	•••••	•••••	•••••		
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••••••
		•••••			
	•••••	•••••	•••••		•••••
		•••••			

(0)	Find the value of k .	[2]
(a)	This the value of k.	
(b)	Find the equation of the curve.	[4]

(c)	Find $\frac{d^2y}{dx^2}$.	[2]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(d)	Determine the nature of the stationary point at $(2, -3.5)$.	[2]
		••••

The diagram shows a cross-section of seven cylindrical pipes, each of radius 20 cm, held together by a thin rope which is wrapped tightly around the pipes. The centres of the six outer pipes are A, B, C, D, E and F. Points P and Q are situated where straight sections of the rope meet the pipe with centre A.

(a)	Show that angle $PAQ = \frac{1}{3}\pi$ radians.	[2]
		••••
		••••
(b)	Find the length of the rope.	[4]
		••••
		••••
		••••
		••••

	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
Find the area of the complete region enclosed by the rope.	[
	•••••
	••••••