
Find <i>m</i> .					[3
	•••••			•••••	
		••••••		•••••	
		•••••			
		•••••			
	•••••			•••••	
	•••••	•••••••	•	••••••	•••••
				•••••	
••••••	•••••	••••••••	••••••	••••••	•••••
		•••••	•••••	•••••	
		••••••	•••••	••••••	
		••••••	•••••	••••••	
	•••••	•••••	•••••	••••••	
	•••••			•••••	
	•••••	•••••	•••••	•••••	
					- FET 1954

(4)	Find the driving force when the acceleration of the minibus is $0.5 \mathrm{ms^{-2}}$.	[2]
		••••
		••••
		• • • •
		••••
		••••
		••••
4)		
(b)		
(b)		[2]
(b)		[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]
(b)	Find the power required for the minibus to maintain a constant speed of $25\mathrm{ms^{-1}}$.	[2]

3

Four coplanar forces of magnitudes $40\,\mathrm{N}$, $20\,\mathrm{N}$, $50\,\mathrm{N}$ and $F\,\mathrm{N}$ act at a point in the directions shown in the diagram. The four forces are in equilibrium.

Find F and α .	[6]

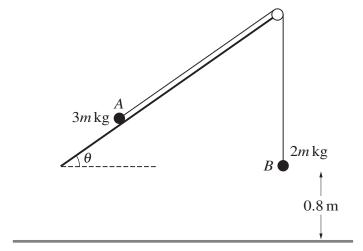
A car starts from rest and moves in a straight line with constant acceleration $a \,\mathrm{m\,s^{-2}}$ for a distance of 50 m. The car then travels with constant velocity for 500 m for a period of 25 s, before decelerating to rest. The magnitude of this deceleration is $2a \,\mathrm{m\,s^{-2}}$.

(a) Sketch the velocity-time graph for the motion of the car. [1]

(b)	Find the value of a .	[3
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(c)	Find the total time for which the car is in motion.	[3
		•••••
		•••••

(a)	Find the decrease in kinetic energy of the block as it moves from P to Q .	[2
		•••••
		••••••
(b)	Hence find the work done by the force pushing the block up the slope as the block P to Q .	moves from [3
		•••••
		••••••
		•••••

Find the time taken, after this instant, for the block to return to P .	[4
	•••••
	Ten 200 v


6 A particle travels in a straight line PQ. The velocity of the particle t s after leaving P is v m s⁻¹, where $v = 4.5 + 4t - 0.5t^2$.

(a)	Find the velocity of the particle at the instant when its acceleration is zero.	[3]
		60

The particle comes to instantaneous rest at Q.

(b)	Find the distance PQ .	[6]

7

Two particles A and B, of masses $3m \, \text{kg}$ and $2m \, \text{kg}$ respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the edge of a plane. The plane is inclined at an angle θ to the horizontal. A lies on the plane and B hangs vertically, $0.8 \, \text{m}$ above the floor, which is horizontal. The string between A and the pulley is parallel to a line of greatest slope of the plane (see diagram). Initially A and B are at rest.

(a)	Given that the plane is smooth, find the value of θ for which A remains at rest.	[3]
It is	given instead that the plane is rough, $\theta = 30^{\circ}$ and the acceleration of A up the p	lane is $0.1 \mathrm{ms^{-2}}$.
(b)	Show that the coefficient of friction between A and the plane is $\frac{1}{10}\sqrt{3}$.	[5]
		FIGURE

When <i>B</i> reaches the floor it comes to rest.
Find the length of time after P reaches the floor for which A is moving up the plane. [Voy me
Find the length of time after B reaches the floor for which A is moving up the plane. [You ma assume that A does not reach the pulley.]
Fig. 25%