- A tram starts from rest and moves with uniform acceleration for $20 \, \text{s}$. The tram then travels at a constant speed, $V \, \text{m s}^{-1}$, for $170 \, \text{s}$ before being brought to rest with a uniform deceleration of magnitude twice that of the acceleration. The total distance travelled by the tram is $2.775 \, \text{km}$.
 - (a) Sketch a velocity-time graph for the motion, stating the total time for which the tram is moving. [2] **(b)** Find *V*. [2] (c) Find the magnitude of the acceleration. [2]

2

Coplanar forces of magnitudes $20 \,\mathrm{N}$, $P \,\mathrm{N}$, $3P \,\mathrm{N}$ and $4P \,\mathrm{N}$ act at a point in the directions shown in the diagram. The system is in equilibrium.

Find P and θ .	[6]

3

A particle of mass $2.5 \,\mathrm{kg}$ is held in equilibrium on a rough plane inclined at 20° to the horizontal by a force of magnitude $T \,\mathrm{N}$ making an angle of 60° with a line of greatest slope of the plane (see diagram). The coefficient of friction between the particle and the plane is 0.3.

Find the greatest and least possible values of T .	[8]
	/00_

A and B coalesce during this collision.	
Find the total loss of kinetic energy in the system due to the three collision	ns. [:
ind the term less of mineral energy in the system and to the times comment.	[.
	••••••

00

9709 s20 qp 42 5 A car of mass 1250 kg is moving on a straight road. (a) On a horizontal section of the road, the car has a constant speed of $32\,\mathrm{m\,s^{-1}}$ and there is a constant force of 750 N resisting the motion. (i) Calculate, in kW, the power developed by the engine of the car. [2] (ii) Given that this power is suddenly decreased by 8 kW, find the instantaneous deceleration of the car. [3]

b)	On a section of the road inclined at $\sin^{-1} 0.096$ to the horizontal, the resistance to the motion of the car is $(1000 + 8v)$ N when the speed of the car is v m s ⁻¹ . The car travels up this section of the road at constant speed with the engine working at 60 kW.
	Find this constant speed. [5]

6 A particle P moves in a straight line. The velocity $v \,\mathrm{m}\,\mathrm{s}^{-1}$ at time t s is given by

$$v = 2t + 1$$
 for $0 \le t \le 5$,
 $v = 36 - t^2$ for $5 \le t \le 7$,
 $v = 2t - 27$ for $7 \le t \le 13.5$.

(a) Sketch the velocity-time graph for $0 \le t \le 13.5$. [3]

(b)	Find the acceleration at the instant when $t = 6$.]

•••••
•••••
••••••
•••••
 •••••
•••••
•••••
•••••
•••••
••••••
•••••