•••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••					
•••••	••••••	•••••••		••••••••••	•••••	
•••••		•••••				
•••••••••••••••••••••••••••••••••••••••	•••••				•••••	
	•••••					
	••••••	•		•		
	•••••		•••••		•••••	
	•••••					
••••••	•••••	•••••••••••			•••••	
•••••	••••					
	••••					

Find the exact value of $\int_0^1 (2-x)e^{-2x} dx$.	[5
	١٥٥٧

	1 age 3 01 10	9709_520_qp_33
3 (a)	Show that the equation	
()	$\ln(1 + e^{-x}) + 2x = 0$	
	can be expressed as a quadratic equation in e^x .	[2]
(b)	Hence solve the equation $ln(1 + e^{-x}) + 2x = 0$, giving your answer correct	t to 3 decimal places. [4]
		[m]:54-1

4 The equation of a curve is $y = x \tan^{-1}(\frac{1}{2}x)$.

(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[3]
(b)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point v	with coordinates
	(0, p).	
	(0, p). Find p .	[3]

5	By first expressing the equation	
		tar

$\tan\theta\tan(\theta+45^\circ)=2\cot2\theta$	
as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.	[6]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	۲U
	Ţ,

7-38-11

[2]

6 (a) By sketching a suitable pair of graphs, show that the equation $x^5 = 2 + x$ has exactly one real root.

(b) Show that if a sequence of values given by the iterative formula

converges, then it converges to the root of the equation in part (a).

$$x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$$

(c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

7 Let $f(x) = \frac{2}{(2x-1)(2x+1)}$.

(a)	Express $f(x)$ in partial fractions.	[2]
(b)	Using your answer to part (a), show that	
	2 1 1 1 1	
	$(f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	[2]
	$(2x-1)^{-}$ $2x-1$ $2x+1$ $(2x+1)^{-}$	
		•••••••••••
		••••••
		•••••
		•••••
		•••••
		••••••
		•••••
		I TO YEAR

Hence show that $\int_{1}^{2} (f(x))^{2} dx = \frac{2}{5} + \frac{1}{2} \ln(\frac{5}{9}).$	
	•••••
	••••••
	•••••
	•••••
	•••••

8 Relative to the origin O, the points A, B and D have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}$.

A fourth point C is such that ABCD is a parallelogram.

Find the position vector of C and verify that the parallelogram is not a rhombus.

					•••••
••••••	•••••				• • • • • • • • • • • • • • • • • • • •
•••••	•••••			•••••	•••••
••••••					••••••
					••••••
	•••••				•••••
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		[2
Find the area	of the parallelo	gram correct to 3 sig	nificant figures.		

9	(a)	The complex numbers u and w are such that
		u - w = 2i and $uw = 6$.
		Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact. [5]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers *z* satisfying the inequalities

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where <i>B</i> is a positive constant.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	700

(b)	Solve the differential equation and obtain an expression for t in terms of h and	r.	[8]
		•••••	
		••••••	•••••
		•••••	•••••
		,	•••••
			••••••
		•	•••••
			•••••
		,	••••••
			••••••
		••••	
		••••	
			00