		••••••			
			•••••		
		•••••	•••••		
		••••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	
		••••••			
•••••		•••••	•••••	•••••	

Find the equation of the curve.					[4
	•••••	•••••	•••••		•••••
	•••••				•••••
	•••••	•••••	•••••	•••••••••••	•••••
	•••••	•••••	•••••		•••••
	•••••				•••••
	•••••	•••••		•••••••••••	•••••
					•••••
	•••••	•••••	•••••		•••••
	•••••	•••••	•••••		
					11.754

3 In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).

(a)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

(b)

State, in terms of f, the equation of the graph shown with broken lines. [1]

.....

(c)

State, in terms of f, the equation of the graph shown with broken lines.

8

Expand $(1 + a)^5$ in ascending powers of a up to and including the term in a^3 .
TT 1
Hence expand $[1 + (x + x^2)]^5$ in ascending powers of x up to and including the term in x^2 simplifying your answer.

The diagram shows a cord going around a pulley and a pin. The pulley is modelled as a circle with centre O and radius 5 cm. The thickness of the cord and the size of the pin P can be neglected. The pin is situated 13 cm vertically below O. Points A and B are on the circumference of the circle such that AP and BP are tangents to the circle. The cord passes over the major arc AB of the circle and under the pin such that the cord is taut.

Calculate the length of the cord.	[6]

<i>J</i> 00\

(a)	Find the rate at which the y-coordinate is increasing when $x = 1$.	[4

•	•••••
•	•••••
	•••••
•	
•	•••••
•	•••••
•	•••••
•	
•	
•	
•	
•	••••••
•	•••••
•	•••••
•	 •••••
•	•••••
•	

Show that $\frac{\tan x}{1 + \cos x}$	030 1 - 0030	3111 0 003 0			
,		•••••	•••••		
	•••••	•••••	•••••	•••••	
			••••		
•••••	•••••				
		•••••	•••••		•••••
			•••••		
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	
			•••••		
	•••••	•••••	•••••		•••••
			•••••		
			•••••		•••••
	•				
•••••	•••••	•••••	•••••	••••••	•••••
			•••••		
•••••	•••••	•••••	•••••		
					10

b)	Hence solve the equation	$\frac{\tan \theta}{}$ +	- tan θ =	$=\frac{6}{180^{\circ}}$ for $0^{\circ} < \theta < 180^{\circ}$.	[4]
-,		$1 + \cos \theta$	$1-\cos\theta$	$\tan \theta$	[.]
		•	•		
		•••••			
			•••••		
		•	•		
		•••••	•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
		•••••	•••••	•••••	•••••
			•••••		
		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
		•••••	• • • • • • • • • • • • • • • • • • • •		
		••••••	••••••	••••••	••••••
			• • • • • • • • • • • • • • • • • • • •		
		•••••	•••••		

(a)	Given that the progression is geometric, find the sum to infinity.	[3
		•••••
		••••••
		••••••
		•••••
		•••••
		•••••
		••••••

It is now given instead that the progression is arithmetic.

•••••
•••••
•••••
•••••

9 The functions f and g are defined by

$$f(x) = x^2 - 4x + 3$$
 for $x > c$, where c is a constant,

$$g(x) = \frac{1}{x+1}$$
 for $x > -1$.

(a)	Express $f(x)$ in the form $(x - a)^2 + b$.	[2]
It is	given that f is a one-one function.	
(b)	State the smallest possible value of c .	[1]

It is now given that c = 5.

(c)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3]
(d)	Find an expression for $gf(x)$ and state the range of gf .	[3]

10 (a	1)	The coordinates of two points A and B are $(-7, 3)$ and $(5, 11)$ respectively.
		Show that the equation of the perpendicular bisector of AB is $3x + 2y = 11$. [4]

(b)	A circle passes through A and B and its centre lies on the line $12x - 5y = 70$.	
	Find an equation of the circle.	[5]
		157 -32 s 15

11

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$.	[4]	
		(63)	, i

[7]
• • • • • • •
•••••
•••••
· • • • • • • • • • • • • • • • • • • •
• • • • • • •
• • • • • • •
,
•••••
· • • • • • • • • • • • • • • • • • • •
,
• • • • • • •