				•	gression				[4]
	•••••						•••••		
	•••••			•••••					
				••••					•••••
•••••	•••••	•	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••
	•••••			•••••					
	•••••		,	•••••			•••••		
	•••••			•••••					
				••••					
	••••••	••••••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••
	••••••	••••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••
	•••••	••••••		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••
	•••••	••••••		•••••	•••••	••••••	•••••		•••••
	•••••	•••••			•••••	•••••	•••••	•••••	•••••

F	Find the value of the positive constant k .	
•		•••••
•		
		•••••
•		••••••
		•••••
•		••••••
•		••••••
		•••••
•		••••••
		•••••

Each year the selling price of a diamond necklace increases by 5% of the price the year before. The

(a)	Write down an expression for the selling price of the necklace n years later and hence find th selling price in 2008.
(b)	The company that makes the necklace only sells one each year. Find the total amount of mone obtained in the ten-year period starting in the year 2000.
(b)	

3

4

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]
		••••••
	•••••••••••••••••••••••••••••••	

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ or to $y = g(x)$.

(c) State the equation of the curve which is the reflection of y = f(x) in the x-axis. Give your answer in the form $y = a \cos 2x + b$, where a and b are constants. [1]

	Given that the line is a tangent to the curve, express m in terms of c .	[3
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Given instead that $m = -4$, find the set of values of c for which the line intersects the cutwo distinct points.	erve a
(b)		
(b)		
(b)		

6 Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto \frac{1}{2}x - a$$
,

$$g: x \mapsto 3x + b,$$

where a and b are constants.

G	iven that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b.
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
	sing these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and d onstants.
•••	
•••	
•••	
•••	
•••	
•••	

[3	$\cos \theta$.	$\frac{1+\sin\theta}{}$	e identity $\frac{1+\sin\theta}{\cos\theta}$ +	110ve the lac
		,		
				•••••
III 354				
6				

Hence solve the equation	$\cos \frac{\theta}{\cos \theta} + \frac{1}{1 + \sin \theta}$	$\frac{1}{\theta} = \frac{3}{\sin \theta}$, for $0 \le \theta \le 2\pi$.	[3
		5111 0	
	••••••		••••••
			•••••
	•••••		•••••
•••••	•••••		•••••
	•••••		•••••
			••••••
	••••••		••••••
			•••••
			63

In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX.

Find the perimeter of the shaded region BXC .	[6]
	[iii] (\$54) [ii

9 The equation of a curve is $y = (3 - 2x)^3 + 24x$.

(a)	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]
-----	--	-----

•	•		•	• • • • • • • • • • • • • • • • • • • •
•	•		•	• • • • • • • • • • • • • • • • • • • •
 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

•••••	••••••	••••••	••••••	•••••

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

1 10 1 7 7 7 10 1
00

Determine the nature of each stationary point.	Find the coordinates of each of the stationary points on the curve.	[3
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		•••••
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		•••••
Determine the nature of each stationary point.		•••••
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		•••••
Determine the nature of each stationary point.		
Determine the nature of each stationary point.		
	Determine the nature of each stationary point.	[2
		•••••
		•••••
		1000

Find the equation of the circle, C , for which AB is a diameter.	[4
	•••••
	F23 494 c

	•••••••
	•••••
	•••••
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	
Find the equation of the circle which is the reflection of circle <i>C</i> in the line <i>T</i> .	[3
Find the equation of the circle which is the reflection of circle C in the line T .	

11

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

(a)	Find, by calculation, the coordinates of A , B and C .	[6]

through 360° about the x -axis.	[6
	••••••
	•••••