| | | | | • | gression | | | | [4] | |-------|--------|----------|--------|-------|----------|--------|---|----------|--------| | | ••••• | | | | | | ••••• | | | | | ••••• | | | ••••• | •••• | | | | | ••••• | ••••• | ••••• | • | ••••• | ••••• | ••••• | •••••• | • | •••••• | •••••• | | ••••• | ••••• | •••••• | •••••• | ••••• | ••••• | •••••• | ••••• | •••••• | ••••• | | | ••••• | | | ••••• | | | | | | | | ••••• | | , | ••••• | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | ••••• | •••• | •••••• | •••••••• | •••••• | ••••• | ••••• | •••••• | • | •••••••• | •••••• | | | •••••• | •••••• | | ••••• | ••••• | ••••• | • | ••••••• | ••••• | | | ••••• | •••••• | | ••••• | ••••• | •••••• | • | | ••••• | | | ••••• | •••••• | | ••••• | ••••• | •••••• | ••••• | | ••••• | | | ••••• | ••••• | | | ••••• | ••••• | ••••• | ••••• | ••••• | F | Find the value of the positive constant k . | | |---|---|--------| | | | | | | | | | | | | | • | | ••••• | | • | | | | | | ••••• | | | | | | | | | | | | | | | | | | • | | •••••• | | | | ••••• | | | | | | | | | | | | | | | | | | • | | •••••• | | • | | •••••• | | | | ••••• | | | | | | | | | | | | | | | | | | • | | •••••• | | | | ••••• | | | | | | | | | Each year the selling price of a diamond necklace increases by 5% of the price the year before. The | (a) | Write down an expression for the selling price of the necklace n years later and hence find th selling price in 2008. | |------------|--| (b) | The company that makes the necklace only sells one each year. Find the total amount of mone obtained in the ten-year period starting in the year 2000. | | (b) | 3 4 The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$. | (a) | State the range of f. | [2] | |-----|---------------------------------|--------| | | | | | | | •••••• | | | | | | | | | | | ••••••••••••••••••••••••••••••• | | A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x). | (b) | State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ or to $y = g(x)$. | |------------|--| (c) State the equation of the curve which is the reflection of y = f(x) in the x-axis. Give your answer in the form $y = a \cos 2x + b$, where a and b are constants. [1] | | Given that the line is a tangent to the curve, express m in terms of c . | [3 | |------------|--|--------| | | | | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | (b) | Given instead that $m = -4$, find the set of values of c for which the line intersects the cutwo distinct points. | erve a | | (b) | | | | (b) | | | | (b) **6** Functions f and g are defined for $x \in \mathbb{R}$ by $$f: x \mapsto \frac{1}{2}x - a$$, $$g: x \mapsto 3x + b,$$ where a and b are constants. | G | iven that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b. | |-----|--| | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | | | | | | | ••• | | | | | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | | sing these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and d onstants. | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | | | | [3 | $\cos \theta$. | $\frac{1+\sin\theta}{}$ | e identity $\frac{1+\sin\theta}{\cos\theta}$ + | 110ve the lac | |---------|-----------------|-------------------------|--|---------------| , | ••••• | III 354 | | | | | | 6 | | | | | | Hence solve the equation | $\cos \frac{\theta}{\cos \theta} + \frac{1}{1 + \sin \theta}$ | $\frac{1}{\theta} = \frac{3}{\sin \theta}$, for $0 \le \theta \le 2\pi$. | [3 | |--------------------------|---|--|--------| | | | 5111 0 | | | | | | | | | | | | | | •••••• | | •••••• | | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | | | | | | | | | | | ••••• | ••••• | | ••••• | | | | | | | | | | | | | ••••• | | ••••• | •••••• | •••••• | | •••••• | | | | | ••••• | 63 | | | | | | In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX. | Find the perimeter of the shaded region BXC . | [6] | |---|------------------| [iii] (\$54) [ii | | | | | | | |
 | |------| |
 | |
 | |
 | | | | | | | | | | | |
 | 9 The equation of a curve is $y = (3 - 2x)^3 + 24x$. | (a) | Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. | [4] | |-----|--|-----| |-----|--|-----| |
 | | | | | |---|---|---|---|---| | • | • | | • | • | | | | | | | |
 | | | | | | | | | | | | | | | | | |
 | • | • | | • | • | | | | | | | | | | | | | |
• | • | • | • | • | | | | | | | | | | | | | |
 |
 |
 | |------|------|------| |
 |
 |
 |
 |
 |
 |
 |
 |
 | ••••• | • | ••••• | • | • | |-------|---|-------|---|---| ••••• | •••••• | •••••• | •••••• | ••••• | |-------|--------|--------|--------|-------| | | | | | | | | | | | | | ••••• | • | • | | |-------|---|---|--|
 |
 | |------|------| |
 |
 | |
 | |-------------------| | | | 1 10 1 7 7 7 10 1 | | | | | | 00 | | Determine the nature of each stationary point. | Find the coordinates of each of the stationary points on the curve. | [3 | |--|---|-------------| | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | ••••• | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | ••••• | | Determine the nature of each stationary point. | | ••••• | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | ••••• | | Determine the nature of each stationary point. | | | | Determine the nature of each stationary point. | | | | | Determine the nature of each stationary point. | [2 | | | | | | | | | | | | ••••• | ••••• | | | | | | | | 1000 | | | | | | Find the equation of the circle, C , for which AB is a diameter. | [4 | |--|-----------| | | | | | | | | ••••• | F23 494 c | | | | | | | | | ••••••• | |---|---------| | | ••••• | ••••• | | | | | | | | | | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | | | Find the equation of the circle which is the reflection of circle <i>C</i> in the line <i>T</i> . | [3 | | Find the equation of the circle which is the reflection of circle C in the line T . | | 11 The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB. | (a) | Find, by calculation, the coordinates of A , B and C . | [6] | |-----|--|-----| through 360° about the x -axis. | [6 | |-----------------------------------|--------| | | | | | | | | | | | •••••• | ••••• |