Page 1 of 18

Express y in terms of x .	[3]

2 (a) On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $-\frac{1}{3}\pi \le \arg(z-1-2\mathrm{i}) \le \frac{1}{3}\pi$ and $\mathrm{Re}\,z \le 3$. [3]

(b)	Calculate the least value of arg z for points in the region from (a). Give your answer in radians correct to 3 decimal places. [2]

Page 3 of 18

Find the values of a and b .	[5]

Page 4 of 18

4	Solve	the	equation
---	-------	-----	----------

$\frac{5z}{1+2i} - zz^* + 30 + 10i = 0,$	
giving your answers in the form $x + iy$, where x and y are real.	[5]
	••••••

Page 5 of 18

5	The parametric	equations	of a	curve	are

$$x = te^{2t}$$
, $y = t^2 + t + 3$.

	$= e^{-2t}.$			
•••••		•••••	 	•••••
•••••			 	
•••••			 	
•••••			 	
•••••		•••••	 	••••••
•••••			 	
•••••			 	

	Ience show that the n						
							•••••
•							
•		•••••	•••••	•••••	•••••	•••••	•••••
•	•••••	•••••			•••••		•••••
		•••••					
•							•
•							
••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
		•••••					
			•••••	• • • • • • • • • • • • • • • • • • • •			•••••
••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
				• • • • • • • • • • • • • • • • • • • •		•••••	
••	•••••	•••••••		•	••••••	••••••	••••••
		•••••		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
,			,				
		•••••		•••••	•••••		

Page 7 of 18

.,	Express $5 \sin \theta + 12 \cos \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$.	
		••••••
		••••••
		•••••
		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••
		••••••
		••••••

Page 8 of 18

•••	
•••	
•••	 •••••
•••	
•••	
•••	
•••	
•••	
•••	•••••
•••	
	•••••
	 •••••
•••	
•••	
•••	7134
•••	

Page 9 of 18

7

The diagram shows a circle with centre O and radius r. The angle of the **minor** sector AOB of the circle is x radians. The area of the **major** sector of the circle is 3 times the area of the shaded region.

(a)	Show that $x = \frac{3}{4}\sin x + \frac{1}{2}\pi$.	[4]
		••••••
		••••••
		•••••••••••••••••••••••••••••••••••••••

Page 10 of 18

••		
•		•••••
•		•••••
		•••••
		•••••
•		•••••
		•••••
		•••••
	Use an iterative formula based on the equation in (a) to calculate this root correct to 2	
	Use an iterative formula based on the equation in (a) to calculate this root correct to 2 places. Give the result of each iteration to 4 decimal places.	
		[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[]
	places. Give the result of each iteration to 4 decimal places.	[.
	places. Give the result of each iteration to 4 decimal places.	[.

8

The diagram shows the curve $y = x^3 \ln x$, for x > 0, and its minimum point M.

(a)	Find the exact coordinates of M .	[4]

Find the exact area of the shaded region bounded by the curve, the x-axis and the line $x = \frac{1}{2}$. [5]
Till 054

Page 13 of 18

9 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3y}\sin^2 2x.$$

It is given that $y = 0$ when $x = 0$.	
Solve the differential equation and find the value of y when $x = \frac{1}{2}$.	[7]
	••••••
	••••••
	,
	•••••
	700

Page 14 of 18

í

Page 15 of 18

10 With respect to the origin O, the points A, B, C and D have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \qquad \overrightarrow{OC} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 5 \\ -6 \\ 11 \end{pmatrix}.$$

.)	Find the obtuse angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} .
1	ine l passes through the points A and B .
	Find a vector equation for the line l .

C and D .					[4]
		•••••			•••••
•		•		•	
•••••	•••••	•••••			•••••
••••••	•••••	••••••	•••••	••••••	•••••
•••••		•••••			
•••••		•••••	•••••	••••••	•••••
•••••	•••••	•••••		••••••	•••••
••••••		••••••	••••••	••••••	•••••
•••••	•••••	•••••			•••••
•••••	•••••	•••••		••••••	•••••
				•••••	

11	Let $f(x) =$	$5x^2 + x + 11$
11	Let $I(x) =$	$\frac{5x^2 + x + 11}{(4+x^2)(1+x)}$

Express $f(x)$ in partial fractions.	
	000

	Hence show that $\int_0^2 f(x) dx = \ln 54 - \frac{1}{8}\pi.$	
~ ~ ~		000