Page 1 of 16

Show that the line and the curve meet for all values of k .	[4]
	- 133 -e

Page 2 of 16

	Stretch parallel to the x-axis with scale factor $\frac{1}{2}$
	Reflection in the <i>y</i> -axis
	Stretch parallel to the <i>y</i> -axis with scale factor 3
Fin	d g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants. [4]
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

Page 3 of 16

same r	he <i>x</i> -coordinate or rate.	of the point on	the curve at	which the	α- and y-coor	dinates are ir	icreasing at the
•••••			•••••		•••••	•••••	
						•••••	
•••••					•••••	•••••	
•••••			•••••		•••••	•••••	•••••
					•••••	•••••	
•••••	•••••		•••••		•••••	•••••	
•••••	••••••	,	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
						•••••	
					•••••	•••••	
•••••	••••••		•••••		•••••	•••••	
			•••••				
•••••					•••••	•••••	
•••••	•••••		•••••		•••••	•••••	
						•••••	
•••••			•••••	•••••			
•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •		

Page 4 of 16

The circumference round the trunk of a large tree is measured and found to be 5.00 m. After one year

Given that the circumferences at yearly intervals form an arithmetic progression, find circumference 20 years after the first measurement.	
	• • • •
	• • • •
	•••
	•••
	• • • •
	••••
	•••
Given instead that the circumferences at yearly intervals form a geometric progression, find circumference 20 years after the first measurement.	
	th

4

Page 5 of 16

Find the coordinates of B .	[6]

Page 6 of 16

6 In the expansion of $\left(\frac{x}{a} + \frac{a}{x^2}\right)^7$, it is given that

 $\frac{\text{the coefficient of } x^4}{\text{the coefficient of } x} = 3.$

FEET CAR A F

Page 7 of 16

7	(a)	By first obtaining a quadratic equation in $\cos \theta$, solve the equation
		$\tan \theta \sin \theta = 1$
		for $0^{\circ} < \theta < 360^{\circ}$. [5]

Page 8 of 16

Show that	$\sin \theta$	$\frac{\sin\theta}{\tan\theta} \equiv \tan\theta\sin\theta.$	[3
•••••	•••••		
	•••••		
•••••	•••••		
•••••	•••••		
•••••	•••••		
	•••••		
	•••••		
•••••			
•••••	••••••		
•••••	•••••		
	•••••		
	•••••		
	•••••		I = 1.754
	•••••		
			700

The diagram shows triangle ABC in which angle B is a right angle. The length of AB is 8 cm and the length of BC is 4 cm. The point D on AB is such that AD = 5 cm. The sector DAC is part of a circle with centre D.

(a)	Find the perimeter of the shaded region.	[5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Page 10 of 16

Fin	nd the area of the shaded region.	[3]
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
•••••		
••••		
••••		
••••		
••••		
••••		
••••		•••••
••••		
••••		
••••		ma.
••••		

Page 11 of 16

(a)	State the range of f.	[1]
(b)	Find an expression for $f^{-1}(x)$.	[3]

Page 12 of 16

The function g is defined by $g(x) = -x^2 - 1$ for $x \le -1$.

Solve t	the equation $fg(x) - gf(x) + 8 = 0$.	[5
•••••		
•••••		
		√ ∞\

10 At the point (4, -1) on a curve, the gradient of the curve is $-\frac{3}{2}$. It is given that $\frac{dy}{dx} = x^{-\frac{1}{2}} + k$, where k is a constant.

(a)	Show that $k = -2$.	[1]
		•••••
(b)	Find the equation of the curve.	[4]

Page 14 of 16

Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	[2
Determine the nature of the stationary point.	

11

The diagram shows the curve with equation $x = y^2 + 1$. The points A(5, 2) and B(2, -1) lie on the curve.

(a)	Find an equation of the line AB . [2]
(b)	Find the volume of revolution when the region between the curve and the line AB is rotated through 360° about the y -axis. [9]

 •••••
•••••
••••••
 •••••
••••••
 •••••
••••••
 •••••