Page 1 of 16 | Show that the line and the curve meet for all values of k . | [4] | |---|-----------------| - 133 -e | | | | # Page 2 of 16 | | Stretch parallel to the x-axis with scale factor $\frac{1}{2}$ | |-------|--| | | Reflection in the <i>y</i> -axis | | | Stretch parallel to the <i>y</i> -axis with scale factor 3 | | Fin | d g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants. [4] | | | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | | | | | | | ••••• | | ## Page 3 of 16 | same r | he <i>x</i> -coordinate or
rate. | of the point on | the curve at | which the | α- and y-coor | dinates are ir | icreasing at the | |--------|-------------------------------------|-----------------|--------------|-----------|---|----------------|------------------| | | | | | | | | | | ••••• | | | ••••• | | ••••• | ••••• | ••••• | | | | | | | | | | | | ••••• | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | | | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | ••••• | ••••• | | ••••• | | ••••• | ••••• | | | | | | | | | | | | ••••• | •••••• | , | ••••• | ••••• | • | ••••• | ••••• | ••••• | | | | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | •••••• | | ••••• | | ••••• | ••••• | ••••• | | | | | | | | | | | | | | | ••••• | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | ••••• | | ••••• | | ••••• | ••••• | ••••• | | | | | | | | | | | | ••••• | | | ••••• | ••••• | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | • | | | #### Page 4 of 16 The circumference round the trunk of a large tree is measured and found to be 5.00 m. After one year | Given that the circumferences at yearly intervals form an arithmetic progression, find circumference 20 years after the first measurement. | | |--|---------| | | • • • • | | | | | | • • • • | | | ••• | | | | | | ••• | | | | | | | | | • • • • | | | | | | | | | •••• | | | | | | ••• | | | | | Given instead that the circumferences at yearly intervals form a geometric progression, find circumference 20 years after the first measurement. | th | 4 ## Page 5 of 16 | Find the coordinates of B . | [6] | |-------------------------------|------| | |
 | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | |
 | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | | | | | | | | | #### Page 6 of 16 6 In the expansion of $\left(\frac{x}{a} + \frac{a}{x^2}\right)^7$, it is given that $\frac{\text{the coefficient of } x^4}{\text{the coefficient of } x} = 3.$ | FEET CAR A F | |--------------| | | | | ## Page 7 of 16 | 7 | (a) | By first obtaining a quadratic equation in $\cos \theta$, solve the equation | |---|-----|---| | | | $\tan \theta \sin \theta = 1$ | | | | for $0^{\circ} < \theta < 360^{\circ}$. [5] | ## Page 8 of 16 | Show that | $\sin \theta$ | $\frac{\sin\theta}{\tan\theta} \equiv \tan\theta\sin\theta.$ | [3 | |-----------|---------------|--|-----------| | ••••• | ••••• | | | | | ••••• | ••••• | ••••• | | | | ••••• | ••••• | | | | ••••• | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | | | | | ••••• | ••••• | •••••• | | | | ••••• | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | I = 1.754 | | | ••••• | | | | | | | 700 | The diagram shows triangle ABC in which angle B is a right angle. The length of AB is 8 cm and the length of BC is 4 cm. The point D on AB is such that AD = 5 cm. The sector DAC is part of a circle with centre D. | (a) | Find the perimeter of the shaded region. | [5] | |-----|--|------| | | | •••• | •••• | | | | | | | | | | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | | ## Page 10 of 16 | Fin | nd the area of the shaded region. | [3] | |-------|-----------------------------------|-------| | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | ••••• | | •••• | | | | •••• | | | | •••• | | ma. | | •••• | | | ## Page 11 of 16 | (a) | State the range of f. | [1] | |------------|--------------------------------------|-----| | | | | | | | | | | | | | (b) | Find an expression for $f^{-1}(x)$. | [3] | #### Page 12 of 16 The function g is defined by $g(x) = -x^2 - 1$ for $x \le -1$. | Solve t | the equation $fg(x) - gf(x) + 8 = 0$. | [5 | |---------|--|-------------| | | | | | ••••• | ••••• | √ ∞\ | 10 At the point (4, -1) on a curve, the gradient of the curve is $-\frac{3}{2}$. It is given that $\frac{dy}{dx} = x^{-\frac{1}{2}} + k$, where k is a constant. | (a) | Show that $k = -2$. | [1] | |------------|---------------------------------|-------| | | | | | | | ••••• | | | | | | | | | | (b) | Find the equation of the curve. | [4] | Page 14 of 16 | Determine the nature of the stationary point. | [2 | |---|----| | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | Determine the nature of the stationary point. | [2 | | | | | | | | | | | | | | | | | Determine the nature of the stationary point. | | 11 The diagram shows the curve with equation $x = y^2 + 1$. The points A(5, 2) and B(2, -1) lie on the curve. | (a) | Find an equation of the line AB . [2] | |-----|---| | | | | | | | | | | | | | | | | (b) | Find the volume of revolution when the region between the curve and the line AB is rotated through 360° about the y -axis. [9] |
 | |-----------| | | |
 | | | | | | | | | |
••••• | | | |
 | | | |
 | | | | | | | | | | ••••• | | | |
 | | | |
 | | | | | | •••••• | | | |
••••• | | | |
 | | | |
 | | | | | | •••••• | | | |
••••• | | | |
 | | | |
 | | | | | | •••••• | | | |
••••• | | | |
 | | | |
 | | | | | | | | | | |