F 1954
/00

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+2-3i| \le 2$ and $\arg z \le \frac{3}{4}\pi$. [4]

3

The variables x and y satisfy the equation $x^ny^2 = C$, where n and C are constants. The graph of $\ln y$ against $\ln x$ is a straight line passing through the points (0.31, 1.21) and (1.06, 0.91), as shown in the diagram.

Find the value of n and find the value of C correct to 2 decimal places.	[5]
	••••••

4	The	parametric	equations	of a	curve are

The parametric equations of a curve are						
	$x = 1 - \cos \theta,$	$y = \cos \theta - \frac{1}{4}\cos 2\theta$				
Show that $\frac{dy}{dx} = -2\sin^2(\frac{1}{2}\theta)$				[5]		
				•••••		
				•••••		
				•••••		
				•••••		

	$\tan \alpha = 3 \tan \beta$.	$tan(\alpha + \beta) = 2$ and	
[6		of α and β .	Find the possible va

	•••••				•••••			
•••••	•••••		•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •		••••••	•	••••••	••••••
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••			• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •		•••••		•••••			
•••••	•••••		•••••	•••••	•••••			•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	,	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••
				•••••				
	•••••				•••••			
•••••	•••••		•••••	•••••	•••••		•••••	•••••
	•••••							
•••••					•••••			
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				•••••				
	•••••				•••••			
•••••	•••••		•••••	•••••	•••••	••••••	•••••	•••••
				•••••				
•••••					•••••			
								1-37-6
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		

[2]

7 (a) By sketching a suitable pair of graphs, show that the equation $4 - x^2 = \sec \frac{1}{2}x$ has exactly one root in the interval $0 \le x < \pi$. [2]

	• •
(c)	Use the iterative formula $x_{n+1} = \sqrt{4 - \sec \frac{1}{2}x_n}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

(b) Verify by calculation that this root lies between 1 and 2.

8 (a)	Find the quotient and remainder when $8x^3 + 4x^2 + 2x + 7$ is divided by $4x^2 + 1$.	[3]
		,
		13541

. \	Hance find the event value of	$\frac{1}{2} 8x^3 + 4x^2 + 2x + 7$			[5]	
))	Hence find the exact value of	\int_{0}	$4x^2 + 1$	- dx.		[5]
		••••••				
		••••••				
					•••••	
		••••••	•••••		•••••	
					•••••	
		•••••				
		•••••				
		••••••				
		•••••				
		•••••				

9 The variables x and y satisfy the differential equation

$$(x+1)(3x+1)\frac{\mathrm{d}y}{\mathrm{d}x} = y,$$

and it is given that y = 1 when x = 1.

Solve the differential equation and find the exact value of y when $x = 3$, giving your answer in a simplified form. [9]

(a)	Find a vector equation for the line through A and B .	[3
(b)	Find the acute angle between the directions of AB and l , giving your answer	r in degrees. [3
(b)	Find the acute angle between the directions of AB and l , giving your answer	r in degrees. [3
(b)	Find the acute angle between the directions of AB and l , giving your answer	
(b)		
(b)		

Show that the line through <i>A</i> and <i>B</i> does not inter	 *•	[4
		•••••

11

The diagram shows the curve $y = \sin x \cos 2x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(a)	Find the x -coordinate of M , giving your answer correct to 3 significant figures. [6]

x-axis in the first quadrant, giving your answ	or in a simplified exact form.	[:
		•••••
		••••••
		••••••
		700