| Find $f(x)$. | | | | | | [4 | |---------------|--------|------------|--------|---|--------|-----------| | | |
 | | | | | | | | | | ••••• | |
•••••• | •••••• | • | •••••• |
••••• | | ••••• | ••••• |
•••••• | •••••• | •••••• | •••••• |
••••• | | ••••• | |
•••••• | •••••• | •••••• | •••••• |
 | | | |
 | ••••• | | |
 | | | ••••• |
 | | | |
••••• | | | |
 | | | |
 | | | | | | | | | | | | | | • | | | | | |
•••••• | •••••• | • | •••••• |
••••• | | ••••• | |
••••• | ••••• | | |
 | | | |
 | ••••• | | |
 | | | | | | | | | | | | | | | | | | ••••• | ••••• |
•••••• | •••••• | ••••• | ••••• |
••••• | | | |
•••••• | •••••• | •••••• | •••••• |
 | | | | | | | | | | •••••• |
•••••• | •••••• | • | •••••• | | | | |
••••• | ••••• | | ••••• | | | Find the set of values of c for which the curve and line intersect at two distinct p | points. [5 | |--|------------| | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | 60 | 3 Find the term independent of x in each of the following expansions. | (a) | $\left(3x + \frac{2}{x^2}\right)^6$ | [3] | |------------|---|-----| (b) | $\left(3x + \frac{2}{x^2}\right)^6 (1 - x^3)$ | [3] | | | (x^2) | ات | | | $\begin{pmatrix} x^2 \end{pmatrix}$ | | | | $\begin{pmatrix} x^2 \end{pmatrix}$ | 1 | The first term of a geometric progression and the first term of an arithmetic progression are both equal to a . | |---|---| | | The third term of the geometric progression is equal to the second term of the arithmetic progression. | | | The fifth term of the geometric progression is equal to the sixth term of the arithmetic progression. | | | Given that the terms are all positive and not all equal, find the sum of the first twenty terms of the arithmetic progression in terms of a . [6] | ••••• | |------------|--|--------------| | | | | | | | | | | | ••••• | ••••• | ••••• | | | | | | The | functions f and g are defined by | | | | $f(x) = x^2$ for $x \in \mathbb{R}$, | | | | 2 | | | (b) | $g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | to the graph | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | | (b) | Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on | | 6 The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C. | (a) | Find, by calculation, the coordinates of A and B . | 4] | |-----|--|-----| | | | ••• | | | | ••• | | | | ••• | | | | ••• | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | 1 00\ | | | y = 3x - 20 is a tangent to the circle. | [4 | |---|-------| ••••• | ••••• | ••••• | Joo\ | | [4] | 4 | _ | $\sin \theta - 2\cos \theta$ | $\sin \theta + 2\cos \theta$ | Chary that | (0) | 7 | |--------------|--|---|---|-------------------------------|------------|-----|---| | [4] | $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ | = 5 | $\frac{\sin\theta - 2\cos\theta}{\cos\theta + 2\sin\theta}$ | $\cos \theta - 2 \sin \theta$ | Show that | (a) | , | • • • • • • • | •••••• | ••••• | ••••• | | | | | | • | | | ••••• | | | | | | • | ••••• | ••••• | ••••• | ••••• | | | | | | ••••• | • • • • • • | •••••• | ••••• | ••••• | | | | | | • • • • • • | ••••• | ••••• | ••••• | | | | | | • | ••••• | •••••• | •••••• | ••••• | | | | | | • • • • • • | | | | | | | | | • • • • • • • | • • • • • • • | •••••• | ••••• | ••••• | | | | | | • • • • • • | | | | | | | | | • • • • • • • | ••••• | ••••• | | ••••• | | | | | | • • • • • • • | ••••• | 1 000 | | • • • • • • • | •••••• | ••••• | ••••• | | | | (a) | | | | | | | | | (L) | Hanna salau tha acustian | $\sin \theta + 2\cos \theta$ | $\sin \theta - 2 \cos \theta$ | 5 for 00 < 0 < 1000 | [2] | |-----|--------------------------|---|---|---|--------| | D) | Hence solve the equation | $\cos \theta - 2 \sin \theta$ | $\cos \theta + 2 \sin \theta$ | $= 3 10 \text{ f } 0^{\circ} < \theta < 180^{\circ}.$ | [3] | ••••• | ••••• | •••••• | | | | | | | ••••• | ••••• | •••••• | | | | | | | ••••• | | •••••• | ••••• | ••••• | | •••••• | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | • | • | • | | 8 The diagram shows the circle with equation $(x-2)^2 + y^2 = 8$. The chord AB of the circle intersects the positive y-axis at A and is parallel to the x-axis. | (a) | Find, by calculation, the coordinates of A and B . | [3] | |-----|--|-----| AB, is rotated through 360° about the x-axis. | [5 | |---|---------| | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | •••• | | | | | | | | | | | | | | | ••••• | | | | | | •••••• | | | | | | | | | ••••• | 121-875 | | | | 9 Functions f, g and h are defined as follows: f: $$x \mapsto x - 4x^{\frac{1}{2}} + 1$$ for $x \ge 0$, g: $x \mapsto mx^2 + n$ for $x \ge -2$, where m and n are constants, h: $x \mapsto x^{\frac{1}{2}} - 2$ for $x \ge 0$. | (a) | Solve the equation $f(x) = 0$, giving your solutions in the form $x = a + b\sqrt{c}$, where a , b and c are integers. [4] | |-----|---|
 | |-----------| | | |
••••• | | | | ••••• | | | | | |
 | | | |
 | | | | ••••• | | | |
••••• | | | | ••••• | |
••••• | | | | | | | |
••••• | | | |
••••• | | | | ••••• | | ••••• | | | |
 | | | |
 | | | |
••••• | | | | ••••• | | | | | |
 | | | |
 | | | | | | | | | **10** The diagram shows a circle with centre A of radius 5 cm and a circle with centre B of radius 8 cm. The circles touch at the point C so that ACB is a straight line. The tangent at the point D on the smaller circle intersects the larger circle at E and passes through B. | (a) | Find the perimeter of the shaded region. | [5] | |-----|--|-----| (b) | Find the area of the shaded region. | [3] | |-----|-------------------------------------|-----------| [5] 35. F | | | | | | | | | | a) | Find, in terms of k , the values of x at which there is a stationary point. | [| |----|---|--------| •••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | The function f has a stationary value at x = a and is defined by $$f(x) = 4(3x - 4)^{-1} + 3x$$ for $x \ge \frac{3}{2}$. | The function g is defin | ned by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. | | |---|--|------------------------------------| | Determine, making y | ned by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$.
Your reasoning clear, whether g is an i | ncreasing function, a decreasi | | | | ncreasing function, a decreasi | | Determine, making y | | ncreasing function, a decreasi | | Determine, making yes | | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasi | | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasing [| | Determine, making yes | our reasoning clear, whether g is an i | ncreasing function, a decreasing [| | Determine, making yourction or neither. | our reasoning clear, whether g is an i | ncreasing function, a decreas |