Find $f(x)$.						[4
•••••		 ••••••	••••••	•	••••••	 •••••
•••••	•••••	 ••••••	••••••	••••••	••••••	 •••••
•••••		 ••••••	••••••	••••••	••••••	
		 	•••••			
	•••••	 				 •••••
				•		
		 ••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	 •••••
•••••		 •••••	•••••			
		 	•••••			
•••••	•••••	 ••••••	••••••	•••••	•••••	 •••••
		 ••••••	••••••	••••••	••••••	
	••••••	 ••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	
		 •••••	•••••		•••••	

Find the set of values of c for which the curve and line intersect at two distinct p	points. [5
	•••••
	•••••
	•••••
	60

3 Find the term independent of x in each of the following expansions.

(a)	$\left(3x + \frac{2}{x^2}\right)^6$	[3]
(b)	$\left(3x + \frac{2}{x^2}\right)^6 (1 - x^3)$	[3]
	(x^2)	ات
	$\begin{pmatrix} x^2 \end{pmatrix}$	
	$\begin{pmatrix} x^2 \end{pmatrix}$	

1	The first term of a geometric progression and the first term of an arithmetic progression are both equal to a .
	The third term of the geometric progression is equal to the second term of the arithmetic progression.
	The fifth term of the geometric progression is equal to the sixth term of the arithmetic progression.
	Given that the terms are all positive and not all equal, find the sum of the first twenty terms of the arithmetic progression in terms of a . [6]

		•••••
		•••••
		•••••
		•••••
The	functions f and g are defined by	
	$f(x) = x^2$ for $x \in \mathbb{R}$,	
	2	
(b)	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)		
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	to the graph
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	
(b)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on	

6

The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

(a)	Find, by calculation, the coordinates of A and B .	4]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
	1 00\	

y = 3x - 20 is a tangent to the circle.	[4
	•••••
	•••••
	•••••
	Joo\

[4]	4	_	$\sin \theta - 2\cos \theta$	$\sin \theta + 2\cos \theta$	Chary that	(0)	7
[4]	$\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$	= 5	$\frac{\sin\theta - 2\cos\theta}{\cos\theta + 2\sin\theta}$	$\cos \theta - 2 \sin \theta$	Show that	(a)	,
		• • • • • • •	••••••	•••••	•••••		
		• • • • • • • • • • • • • • • • • • • •			•••••		
		• • • • • • • • • • • • • • • • • • • •					
		•••••	•••••	•••••	•••••		
		•••••					
		• • • • • •	••••••	•••••	•••••		
		• • • • • •	•••••	•••••	•••••		
		• • • • • • • • • • • • • • • • • • • •					
		•••••	••••••	••••••	•••••		
		• • • • • •					
		• • • • • • •					
		• • • • • • •	••••••	•••••	•••••		
		• • • • • •					
		• • • • • • •					
		•••••	•••••		•••••		
		• • • • • • •	•••••				
1 000		• • • • • • •	••••••	•••••	•••••		
(a)							

(L)	Hanna salau tha acustian	$\sin \theta + 2\cos \theta$	$\sin \theta - 2 \cos \theta$	5 for 00 < 0 < 1000	[2]
D)	Hence solve the equation	$\cos \theta - 2 \sin \theta$	$\cos \theta + 2 \sin \theta$	$= 3 10 \text{ f } 0^{\circ} < \theta < 180^{\circ}.$	[3]
					•••••
		•••••	••••••		
			•••••		
		•••••	••••••		
			•••••		••••••
		•••••	•••••		••••••
			•••••		
			•••••		
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

8

The diagram shows the circle with equation $(x-2)^2 + y^2 = 8$. The chord AB of the circle intersects the positive y-axis at A and is parallel to the x-axis.

(a)	Find, by calculation, the coordinates of A and B .	[3]

AB, is rotated through 360° about the x-axis.	[5
	•••••
	•••••
	••••
	•••••
	••••••
	•••••
	121-875

9 Functions f, g and h are defined as follows:

f:
$$x \mapsto x - 4x^{\frac{1}{2}} + 1$$
 for $x \ge 0$,
g: $x \mapsto mx^2 + n$ for $x \ge -2$, where m and n are constants,
h: $x \mapsto x^{\frac{1}{2}} - 2$ for $x \ge 0$.

(a)	Solve the equation $f(x) = 0$, giving your solutions in the form $x = a + b\sqrt{c}$, where a , b and c are integers. [4]

 •••••
•••••
•••••
 •••••
•••••
 •••••
 •••••
 •••••
•••••
•••••
 •••••
•••••

10

The diagram shows a circle with centre A of radius 5 cm and a circle with centre B of radius 8 cm. The circles touch at the point C so that ACB is a straight line. The tangent at the point D on the smaller circle intersects the larger circle at E and passes through B.

(a)	Find the perimeter of the shaded region.	[5]

(b)	Find the area of the shaded region.	[3]
		[5] 35. F

a)	Find, in terms of k , the values of x at which there is a stationary point.	[
		••••••
		•••••
		•••••

The function f has a stationary value at x = a and is defined by

$$f(x) = 4(3x - 4)^{-1} + 3x$$
 for $x \ge \frac{3}{2}$.

The function g is defin	ned by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$.	
Determine, making y	ned by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Your reasoning clear, whether g is an i	ncreasing function, a decreasi
		ncreasing function, a decreasi
Determine, making y		ncreasing function, a decreasi
Determine, making yes		ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasi
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasing [
Determine, making yes	our reasoning clear, whether g is an i	ncreasing function, a decreasing [
Determine, making yourction or neither.	our reasoning clear, whether g is an i	ncreasing function, a decreas