Find the speed of P after the collision.	[3
	FEET (0.0)

A car of mass $1400\,\mathrm{kg}$ is travelling at constant speed up a straight hill inclined at α to the horizontal,

(a)	Show that the speed of the car is $11.25 \mathrm{ms^{-1}}$.	[3]
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	e car, moving with speed $11.25 \mathrm{ms^{-1}}$, comes to a section of the hill which is inclined at 2° to	to the
hori	e car, moving with speed 11.25 m s ⁻¹ , comes to a section of the hill which is inclined at 2° to izontal. Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne cai
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]
hori	izontal. Given that the power and resistance force do not change, find the initial acceleration of the	ne car [3]
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]
hori	Given that the power and resistance force do not change, find the initial acceleration of the up this section of the hill.	ne car [3]

2

3

A particle Q of mass $0.2 \,\mathrm{kg}$ is held in equilibrium by two light inextensible strings PQ and QR. P is a fixed point on a vertical wall and R is a fixed point on a horizontal floor. The angles which strings PQ and QR make with the horizontal are 60° and 30° respectively (see diagram).

Find the tensions in the two strings.	[5]

4

An elevator moves vertically, supported by a cable. The diagram shows a velocity-time graph which models the motion of the elevator. The graph consists of 7 straight line segments.

The elevator accelerates upwards from rest to a speed of $2 \,\mathrm{m \, s^{-1}}$ over a period of $1.5 \,\mathrm{s}$ and then travels at this speed for $4.5 \,\mathrm{s}$, before decelerating to rest over a period of $1 \,\mathrm{s}$.

The elevator then remains at rest for $6 \, \text{s}$, before accelerating to a speed of $V \, \text{m s}^{-1}$ downwards over a period of $2 \, \text{s}$. The elevator travels at this speed for a period of $5 \, \text{s}$, before decelerating to rest over a period of $1.5 \, \text{s}$.

(a)	Find the acceleration of the elevator during the first 1.5 s.	[1]
(b)	Given that the elevator starts and finishes its journey on the ground floor, find V .	[2]

wl	at there is no resistance to motion, find the tension in the elevator cab then the elevator is decelerating.	
•••		
• • • •		
•••		
•••		
• • • •		
• • • •		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
		FET 95
••••		

A block of mass 5 kg is being pulled along a rough horizontal floor by a force of magnitude X N acting at 30° above the horizontal (see diagram). The block starts from rest and travels 2 m in the first 5 s of its motion.

(a)	Find the acceleration of the block.	[2]
(b)	Given that the coefficient of friction between the block and the floor is 0.4 , find X .	[4]

		••••
		••••
		••••
		••••
the	e block is now placed on a part of the floor where the coefficient of friction between the block floor has a different value. The value of X is changed to 25, and the block is now in limit ilibrium.	and
(c)	Find the value of the coefficient of friction between the block and this part of the floor.	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

(a)	Find the displacement of the particle from O when $t = 1$.]

 •••••
••••••
•••••
 •••••
•••••

7

Two particles P and Q of masses 0.5 kg and m kg respectively are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the top of two inclined planes. The particles are initially at rest with P on a smooth plane inclined at 30° to the horizontal and Q on a plane inclined at 45° to the horizontal. The string is taut and the particles can move on lines of greatest slope of the two planes. A force of magnitude 0.8 N is applied to P acting down the plane, causing P to move down the plane (see diagram).

(a)	It is given that $m = 0.3$, and that the plane on which Q rests is smooth.
	Find the tension in the string. [5]

[5	e an energy method to find the value of m .
1000	