| | •••• | |--|-----------| | | •••• | | | | | | • • • • • | •••• | | | | | | •••• | •••• | | | | | | | | Find the values of a and b . | [5 | |----------------------------------|---------------| [| | | | |
 | |----------| | | |
 | | | | | |
 | | | |
 | | | | | |
 | | | |
 | | | | | |
 | | | |
 | | | | | |
 | | | |
 | | | | | |
 | | | |
 | | Fig. 25% | | | 4 The variables x and y satisfy the differential equation $$(1 - \cos x)\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin x.$$ It is given that y = 4 when $x = \pi$. | Solve the differential equation, obtaining an expression for <i>y</i> in terms of . | x. [6 | |---|-------| m. | | | | | (b) | Sketch the graph of y against x for $0 < x < 2\pi$. [1] | |------------|--| | | ue of R and give α correct to 2 decimal places. | | |-------------|--|---| | | | | | • • • • • | - - | | | | | | | | • • • • • | | • | | | | | | • • • • • | | •••••• | | | | | | • • • • • | | •••••• | | | | | | • • • • | | | | | | | | •••• | •••• | | | | | | | | •••• | | ••••••• | | | | | | •••• | | • | | | | | | •••• | | | | | | | | •••• | | | | | | | | •••• | | | | | | | |
 | |-----------| | | | •••••• | | | | | |
 | | | |
 | | | |
••••• | | | | | |
 | | | | | | | |
••••• | | | | ••••••••• | | | | | | | | | | | | | | ••••• |
 | | | | | | | | | | | | | 6 Let $f(x) = \frac{5a}{(2x-a)(3a-x)}$, where a is a positive constant. | , | Express $f(x)$ in partial fractions. | [3 | |---|--------------------------------------|--------| ••••• | •••••• | ••••• | 000 | | Hence show that $\int_{a}^{2a} f(x) dx = \ln 6$. | | |---|--| 7 Two lines have equations $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$. |) | Show that the lines are skew. | [: | |---|-------------------------------|----|
 | |-----------| | | | | | | | | | | |
 | |
 | | | | ••••• | | | | | | •••••• | |
 | | | | ••••• | |
 | | | | | | | |
 | | | |
 | |
 | | | |
••••• | | | | | | •••••• | |
 | | | | ••••• | |
 | | | | | 8 The complex numbers u and v are defined by u = -4 + 2i and v = 3 + i. | v where x and y are real. | [: | |--|--------| | | | | | | | | •••••• | | | | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | ••••• | | | | | lence express $\frac{r}{v}$ in the form $re^{i\theta}$, where r and θ are exact. | [: | | | | | | | | | | | | | | | | | | •••••• | | | •••••• | | | ••••• | | | | | | | | | | | | | | | | In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and 2u + v respectively. | (c) | State fully the geometrical relationship between OA and BC . | [2] | |-----|--|-----------| (d) | Prove that angle $AOB = \frac{3}{4}\pi$. | [2] | ETT-SEA F | | | | | | | | | - 9 Let $f(x) = \frac{e^{2x} + 1}{e^{2x} 1}$, for x > 0. - (a) The equation x = f(x) has one root, denoted by a. | Verify by calculation that <i>a</i> lies between 1 and 1.5. | [2] | |--|------------------| Use an iterative formula based on the equation in part (a) to determine a correct places. Give the result of each iteration to 4 decimal places. | to 2 decimal [3] | **(b)** |
 | |------| | | | | | | | | | | | | | | | | |
 | |
 | | | | | | | | | | | |
 | | | | | | | |
 | | | | | | | | | |
 | | | | | **10** The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M. | (a) | Using the substitution $u = \sin x$, find the exact area of the region bounded by the curve and the x -axis. [5] | | |-----|---|--| (b) | Find the exact x -coordinate of M . | [6] | |------------|---|-----| |