		•••••
(b)	Find the first three terms in the expansion, in ascending powers of x , of $(1-2x)^6$.	[2
(c)	Hence find the coefficient of x^2 in the expansion of $(1+x)^5(1-2x)^6$.	[2

Page 2 of 17 9709_m21_qp_12 By using a suitable substitution, solve the equation 2 $(2x-3)^2 - \frac{4}{(2x-3)^2} - 3 = 0.$ [4]

Solve the equation $\frac{\tan \theta + 2 \sin \theta}{\tan \theta - 2 \sin \theta}$	$= 3 101 0 < \theta < 180 $.	[4
		,
		,
		• • • • • • • • • • • • • • • • • • • •
		77 - YEL
	10	60

Find the set of	of values of k for	or which the	line and cur	ve have two	distinct poin	ts of interse	ction.	[5
								••••
•••••								
••••••	•••••••••••	••••••	••••••	••••••	•••••••••	•••••••	••••••	••••
•••••				•••••	•••••			••••
								•••
••••••••••	••••••••••	••••••	••••••	••••••	••••••	•••••••	••••••	•••
•••••	•••••			•••••				• • •
•••••••••••••••••••••••••••••••••••••••	•••••••••••	••••••	••••••	••••••	•••••••••	•••••••	••••••	•••
								•••
••••••••••	•••••	•••••	•••••	••••••	••••••	••••••	•••••	•••
•••••			•••••	•••••	•••••		••••••	•••
•••••								
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••
		,						•••
•••••••••••	•••••••••••	••••••	••••••	••••••	•••••••••	•••••••	••••••	•••
		,						• • •
•••••								
••••••	•••••	••••••	•••••	••••••••••	•••••	••••••	••••••	•••
							•••••	•••
	•••••		•••••					
								a

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

(a)	Describe fully the two single transformations of $y = f(x)$ that have been combined to give resulting transformation.	the [4]
		· • • • •
		· • • • •
		· • • • •
		••••
(b)	State in terms of y , f and x , the equation of the graph shown with broken lines.	[2]
	وه المساحدة	

(a)	Find the rate of increase at A of the x-coordinate of the point.

(b)	Find the equation of the curve.	[4]
		/00\

7 Functions f and g are defined as follows:

f:
$$x \mapsto x^2 + 2x + 3$$
 for $x \le -1$,
g: $x \mapsto 2x + 1$ for $x \ge -1$.

(a)	Express $f(x)$ in the form $(x + a)^2 + b$ and state the range of f.	[3]
		(00)

	Find an expression for $f^{-1}(x)$.	2]
		•••
)	Solve the equation $gf(x) = 13$.	2.1
	(i)	3]

(b)	Find an equation of the tangent to the circle at B .	[2]
		••••••

- **9** The first term of a progression is $\cos \theta$, where $0 < \theta < \frac{1}{2}\pi$.
 - (a) For the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.

	[3]
Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correfigures.	
	[2]
	[2]
	[2]
	[2]
	[2]

(ii)

,	For the case where the progression is arithmetic, the first two terms are again $\cos \theta$ and $\cos \theta \sin^2 \theta$ respectively.
	Find the 85th term when $\theta = \frac{1}{3}\pi$. [4]

The diagram shows a sector ABC which is part of a circle of radius a. The points D and E lie on AB and AC respectively and are such that AD = AE = ka, where k < 1. The line DE divides the sector into two regions which are equal in area.

(a)	For the case where angle $BAC = \frac{1}{6}\pi$ radians, find k correct to 4 significant figures. [5]

.....

For the general case in which angle $BAC = \theta$ radians, where $0 < \theta < \frac{1}{2}\pi$, it is gi	ven that $\frac{\theta}{\sin \theta} > 1$.
Find the set of possible values of k .	[3]
	700

11

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the *x*-axis at the point *A*.

(a)	Find the x-coordinate of A.	[2]
(b)	Find the equation of the tangent to the curve at A .	[4]

Find the x-coordinate of the maximum point of the curve.	[2]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
Find the area of the region bounded by the curve, the <i>x</i> -axis and the line $x = 9$.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	 La 17
6	9
	Find the area of the region bounded by the curve, the x -axis and the line $x = 9$.