1 (a) Sketch the graph of y = |x - 2|. | (b) | Solve the inequality $ x-2 < 3x - 4$. | [3] | |------------|---|-----| •••• | |-------|---------------| | |
•••• | | | | | |
• • • • • | | | | | | | | ••• | • • • • • | | • • • | •••• | | | | | ••• | •••• | | | •••• | | | •••• | | | | | ••• |
• • • • | | |
•••• | | | | | ••• | •••• | | | • • • • | | | | | ••• | •••• | | | •••• | | | •••• | | | | | ••• |
•••• | | | •••• | | | | | •• | •••• | | | •••• | | | | | ••• | •••• | | ••• | •••• | | | •••• | | | | | | | 3 (a) By sketching a suitable pair of graphs, show that the equation $\sec x = 2 - \frac{1}{2}x$ has exactly one root in the interval $0 \le x < \frac{1}{2}\pi$. [2] (b) Verify by calculation that this root lies between 0.8 and 1. [2] (c) Use the iterative formula $x_{n+1} = \cos^{-1}\left(\frac{2}{4-x_n}\right)$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3] | •••••••••• | |------------| | | | | | | | | | | | •••••••• | | | | | | | | | | | | | | | | | | 5 (a) | Show that $\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 2 \cot 2x$. | [4] | |-------|---|-----| (h) | Hence solve the equation | $\frac{\cos 3x}{4}$ | $\frac{\sin 3x}{-4} = 4$ | for $0 < r < \pi$ | | [3] | |-----|--------------------------|---|---|-------------------|-----|---| | (D) | Hence solve the equation | $\sin x$ | $\cos x$ | , 1010 < x < h. | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | | • | | | • | | | | | | | | | | | | • | | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | ••••• | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | • | ••••• | ••••• | | | | | | | | | | | | | ••••• | | | | | | | | | | | 1 7 C. H | | | | | | | | | | | | | | | 555 | 60 | | | | • | | | | | **6** The variables x and y satisfy the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + 4y^2}{\mathrm{e}^x}.$$ It is given that y = 0 when x = 1. | | e tne differe | entiai equatio | n, obtaining a | an expression | for <i>y</i> in terms | OI X. | [´ | |--------|---------------|----------------|----------------|---------------|-----------------------|-------|-------| | | •••••• | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | | | | | | | | •••••• | •••••• | ••••• | ••••• | | ••••• | | | | •••••• | ••••• | | | | | | ••••• | | ••••• | •••••• | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | ••••• | 7 70. | | | | ••••• | |-----|--|--------| | | | | | | | ••••• | | | | | | | | ••••• | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | ••••• | •••••• | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | (b) | State what happens to the value of y as x tends to infinity. | [1] | ••••• | | | | | | | | ••••• | [4] 7 The equation of a curve is $x^3 + 3xy^2 - y^3 = 5$. | | dv | $v^2 + v^2$ | |-----|-----------------------------|-------------| | | Show that $\frac{dy}{dx} =$ | $x^2 + y^2$ | | (a) | Snow that $\frac{1}{1}$ = | 2 2 | | • | • |
 | ••••• | |---|---|------|-------| | | | | | | | | | | |
 |
 | |------|------| |
 |
 | |
 |
 | |------|------| |
 |
 | | • | • • • • • • • • | • • • • • • • • | • • • • • • • • | • • • • • • • • | • • • • • • • • • | ••••• |
 | • • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • |
• • • • • • • • • • | |---|-----------------|-----------------|-------------------|-----------------|-------------------|-------|------|---------------------|-------------------|-------------------|---------------------|-------------------|-----------------|---| • | | • • • • • • • • | • • • • • • • • • | | | |
 | | • • • • • • • • • | | • • • • • • • • • • | | • • • • • • • • |
• |
 | | | | | | |
 | |
 | ••••• | ••••• | ••••• | ••••• | |------|-------|-------|-------|-------| | | | | | | |
 |
 | |------|------| |
 |
 | |
 |
 | | |------|------|--| |
 |
 | | | | | | | |
 |
 |
 |
 |
 | • • • • • • |
 |
 |
 |
 |
 | | |--|------|------|------|------|------|-------------|------|------|------|------|------|--| • • • • • • • | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • | | |---------------|-------|-------|--------|--------|---|---|---|-------|-------|--------|-------|---|---|-------------| | • • • • • • • | ••••• | ••••• | •••••• | ••••• | • | • | | ••••• | ••••• | ••••• | ••••• | | • • • • • • • • • | ••••• | | ••••• | | | ••••• | ••••• | | ••••• | | ••••• | ••••• | ••••• | ••••• | | • | ••••• | | • • • • • • | | | | | | ••••• | | | | ••••• | | | • | | | • • • • • • • | | | | | | • | | | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • | • | • | ••••• | ••••• | ••••• | ••••• | | • • • • • • • • • | • • • • • • | | • • • • • • • | ••••• | ••••• | ••••• | •••••• | | ••••• | | ••••• | ••••• | •••••• | ••••• | ••••• | • | • • • • • • | | ••••• | ••••• | ••••• | ••••• | ••••• | | ••••• | | ••••• | ••••• | ••••• | ••••• | | • | • • • • • • | | • • • • • • • | ••••• | | ••••• | ••••• | | • | | ••••• | ••••• | ••••• | ••••• | • | • | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | • | ••••• | | ••••• | ••••• | ••••• | ••••• | | • | ••••• | | ••••• | ••••• | | | | | ••••• | | | ••••• | | | | • | | | ••••• | •••• | ••••• | ••••• | ••••• | ••••• | •••••• | • | • | • | ••••• | ••••• | •••••• | ••••• | • | • • • • • • • • • | ••••• | | ••••• | ••••• | ••••• | ••••• | •••••• | | ••••• | | ••••• | ••••• | •••••• | ••••• | | • | | | ••••• | ••••• | ••••• | ••••• | ••••• | | ••••• | | ••••• | ••••• | ••••• | ••••• | | • | | | ••••• | ••••• | ••••• | ••••• | ••••• | | • | | ••••• | ••••• | ••••• | ••••• | | • | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | • | • | | ••••• | ••••• | ••••• | ••••• | | | | | ••••• | ••••• | 6 | 9 | In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 3 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. The point M on AB is such that MB = 2AM. The midpoint of FG is N. | (a) | Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} . | [3] | |-----|--|-------| | | | | | | | ••••• | | | | ••••• | | | | | | | | | | (b) | Find a vector equation for the line through M and N . | [2] | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | |
 | | | | | | | | | |-------|-------|---|--------|-------|--------|-------|---|--------|-------|-------| | | | | | | | | | | | | | • • • | |
 | | | ••••• | ••••• | | ••••• | ••••• | ••• | |
• | | | | | | ••••• | ••••• | ••• | |
 | ••••• | | ••••• | ••••• | | ••••• | ••••• | | | | |
 | ••• | |
 | | | ••••• | ••••• | | ••••• | ••••• | ••••• | | | |
 | ••• | |
 | ••••• | | ••••• | ••••• | | ••••• | ••••• | | | | |
 | ••• | |
 | | | ••••• | ••••• | | ••••• | ••••• | ••••• | | | |
 | • • • | ••••• |
 | •••••• | ••••• | ••••• | ••••• | | ••••• | ••••• | ••••• | | | |
 | ••• | |
 | •••••• | ••••• | ••••• | ••••• | • | •••••• | ••••• | ••••• | | | |
 | • • • | |
 | ••••• | ••••• | ••••• | ••••• | ••••• | •••••• | ••••• | ••••• | | | |
 | ••• | ••••• |
 | •••••• | ••••• | •••••• | ••••• | • | •••••• | ••••• | ••••• | | ••• | |
 | ••• | ••••• |
 | •••••• | ••••• | •••••• | ••••• | • | •••••• | ••••• | ••••• | | ••• | |
 | 1954 | | | |
 | | | | | | | | | 9 Let $f(x) = \frac{2 + 11x - 10x^2}{(1 + 2x)(1 - 2x)(2 + x)}$. | | Express $f(x)$ in partial fractions. | [5 | |--|--------------------------------------|-------| | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | ••••• | |--------| | ••••• | | | | | | ••••• | | ••••• | | | | | | ••••• | | | | | | •••••• | | ••••• | | | | | | ••••• | | | | | | | | •••••• | | | | | | | | ••••• | | | | | | | | | | 10 | (a) | The complex | numbers | v and v | w satisfy t | the equations | |----|-----|-------------|---------|---------|-------------|---------------| | v + iw = 5 | and | (1+2i)v - w = | = 3i | |------------|------|---------------|------| | , , 1,,, | ullu | (± 1 =±// // | 01 | | | | | | | e x and y are real [0] | |--------|-------|-----------|-------|-------|--------------------------| | | |
 | | | | | ••••• | |
••••• | | | | | | |
 | | | | | | |
 | | | | | | ••••• |
••••• | | | | | •••••• | ••••• |
••••• | | ••••• | | | •••••• | ••••• |
••••• | | ••••• | | | •••••• | ••••• |
••••• | | ••••• | | | ••••• | |
••••• | | | | | •••••• | |
••••• | | | | | •••••• | |
••••• | | | | | | |
 | | | | | ••••• | |
••••• | | ••••• | | | •••••• | |
••••• | ••••• | ••••• | | | ••••• | ••••• |
••••• | | ••••• | | | (b) | (i) | On an Argand diagram, | , sketch the locus of points representing complex numbers z | satisfying | |------------|-----|-----------------------|---|------------| | | | z-2-3i =1. | | [2] | | (ii) | Calculate the least value of arg z for points on this locus. | [2] | | |------|--|-------|--| | | | ••••• | | | | | ••••• | | | | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | | | | | | | |