| The function f is defined by $f(x) = \frac{1}{3x+2} + x^2$ for $x < -1$. | | |--|----| | Determine whether f is an increasing function, a decreasing function or neither. | [3 | Describe :
transforma | fully the ation. | two singl | e transfo | rmations | which | have bee | n combi | ned to g | ive the | resultin
[4 | |---|------------------|-----------|-----------|----------|-------|---|---|---|---------|---| | | | | | | | | | | | | | | , | ••••• | •••••• | ••••• | ••••• | • | • | •••••• | | ••••• | ••••• | | | | | | | ••••• | | | | | | | | | | | | | | • | | •••••• | •••••• | ••••• | ••••• | • | • | •••••• | | ••••• | | ••••• | | | | | | | | | | ••••• | | | | | | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | • | ••••• | •••••• | ••••• | •••••• | ••••• | | ••••• | ••••• | | | | | • | | • | | | | | | | | | | | | | | • | , | ••••• | •••••• | ••••• | ••••• | • | • | •••••• | ••••• | ••••• | ••••• | • | | | ••••• | ••••• | | | | | | | | | | | | | | | | • | • | | | • | • | • | ••••• | | ••••• | ••••• | ••••• | ••••• | • | ••••• | • | ••••• | ••••• | • | | ••••• | | | | | | • | | • | | | | | | | | | | | | | | ••••• | | ••••• | •••••• | ••••• | ••••• | • | •••••• | •••••• | ••••• | •••••• | ••••• | • | | | ••••• | ••••• | | | | | | | | | | | | | | • | | ••••• | •••••• | ••••• | ••••• | • | • | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | | | | • | 3 The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis. | Find the volume obtained. | [4] | |---------------------------|-----| Find the x -coordinate of P . | [4 | |-----------------------------------|----| 5 Solve the equation | 5 | Solve the | equation | |----------------------|---|-----------|----------| |----------------------|---|-----------|----------| | $\tan\theta + 3\sin\theta + 2$ | _ ? | |-----------------------------------|-----| | $\tan \theta - 3 \sin \theta + 1$ | | | for $0^{\circ} \leqslant \theta \leqslant 90^{\circ}$. | [5] | |---|---| | | | | | | | | | | | ••••• | | | | | | ••••••• | | | | | | | | | | | | | | | ••••• | | | • | | | | | | ••••• | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | •••••• | 6 The coefficient of $\frac{1}{x}$ in the expansion of $\left(2x + \frac{a}{x^2}\right)^5$ is 720. | (a) | Find the possible values of the constant a . | [3] | |-----|--|-------| | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | ••••• |
••••• | ••••• | |-------|-----------|-------| | | | | | |
 | | (b) Hence find the coefficient of $\frac{1}{x^7}$ in the expansion. [2] The diagram shows a sector AOB which is part of a circle with centre O and radius 6 cm and with angle AOB = 0.8 radians. The point C on OB is such that AC is perpendicular to OB. The arc CD is part of a circle with centre O, where D lies on OA. | Find the area of the shaded region. | [6] | |-------------------------------------|-----| (a) | For her first year, express her bonus as a percentage of her basic salary. | |-----|--| | | | | | | | | | | | | | | he end of each complete year, the woman's basic salary will increase by 3% and her bonus wiease by \$100. | | (b) | Express the bonus she will be paid at the end of her 24th year as a percentage of the basic salar paid during that year. | e function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$.
Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . | | |---|--| The function g is defined by g(x) = 2x - 3 for $x \le k$. | For the case where $k = -1$, solve the equation $fg(x) = 193$. | [2 | |---|---------| r | | State the largest value of k possible for the composition fg to be defined. | [: | | | | | | | | | [E] '%L | | | 60 | | The gradient of a curve at the point (x, y) is given by | $\frac{\mathrm{d}y}{\mathrm{d}x} =$ | = 2(x + | $3)^{\frac{1}{2}} - x.$ | The curve has | a stationary | |---|-------------------------------------|---------|-------------------------|---------------|--------------| | point at $(a, 14)$, where a is a positive constant. | | | | | | | () | Find the value of a. | [3] | |------------|---|-----| (b) | Determine the nature of the stationary point. | [3] | [4 | |---------|---------------| | | ••••• | | | · • • • • • • | | | | | | | | | ••••• | | | · • • • • • | | | | | | ••••• | | | · • • • • • • | | | | | | | | | | | | · • • • • • • | | | | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | · • • • • • | | | | | | | | | ••••• | | | · • • • • • • | | | | | | ••••• | | | ••••• | | | | | | | | | | | | · • • • • • • | | FET 175 | | | | | | ` / | Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$. | [4 | |------------|--|--------------| | | | •••••• | | | | ••••• | | | | •••••• | (b) | Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no | solutions [2 | | (~) | The second values of which the equation of the wife with the contract of the second | | | | | • | interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions. | [| |-------------|---|--------| | | | | | | | | | ••••• | | •••••• | | | | | | | | | | • • • • • • | | ••••• | | | | | | ••••• | | •••••• | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | ••••• | | | | | | | | ••••• | | ••••• | | | | | | | | | | • • • • • • | | ••••• | | | | | | | | | | ••••• | | | | | | | | ••••• | | •••••• | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | ••••• | | ••••• | | | | | | ••••• | | •••••• | | | | | | | | | | ••••• | | ••••• | | | | | | | To the second | 7796 | | • • • • • • | | | | | | | 12 A diameter of a circle C_1 has end-points at (-3, -5) and (7, 3). (a) | Find an equation of the circle C_1 . | [3] | |--|-------| | | | | | | | | ••••• | | | | | | | | | | | | | The circle C_1 is translated by $\binom{8}{4}$ to give circle C_2 , as shown in the diagram. | (b) | Find an equation of the circle C_2 . | [2] | |------------|--|-----| The two circles intersect at points R and S. | (c) | Show that the equation of the line RS is $y = -2x + 13$. | [4] | |-----|---|-------------------| (d) | Hence show that the <i>x</i> -coordinates of <i>R</i> and <i>S</i> satisfy the equation $5x^2 - 60x + 15$ | 9 = 0. [2] | | (4) | Trence show that the x coordinates of R and S sairsfy the equation sx — oox + 15 |) — (. [2] | 100 |