| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: |
| $1(\mathrm{i})$ | $9.6,12.4$ | B1 B1 |  |
|  |  | $\mathbf{2}$ |  |
|  | $6.6,49.6$ | B1 B1 |  |
|  |  | $\mathbf{2}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 2(i) | $\begin{aligned} & (\lambda(=2 \times 2.4)=4.8) \\ & \mathrm{e}^{-4.8}\left(1+4+\frac{4.8^{2}}{2}+\frac{4.8^{3}}{3!}\right) \end{aligned}$ | M1 | Any $\lambda$ |
|  | 0.294 (3 sf) | A1 |  |
|  |  | 2 |  |
| 2(ii) | $(\lambda(=60 \times 2.4)=144)$ <br> $\mathrm{N}\left({ }^{\prime} 144\right.$ ', '144') | M1 | N and $\sigma^{2}=\mu \mathrm{SOI}$ |
|  | $\frac{139.5-144^{\prime}}{\sqrt{\prime 144^{\prime}}}(=-0.375)$ | M1 | Allow with no continuity correction |
|  | $\phi\left({ }^{\prime} 0.375\right.$ ') | M1 | Correct area consistent with their working |
|  | 0.646 (3 sf) | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 3(i) | Assume population is normally distributed | B1 |  |
|  | $\bar{x}=25.9$ | B1 | $\text { Allow } \frac{259}{10}$ |
|  | $z=2.17$ | B1 |  |
|  | $' 25.9^{\prime} \pm z \times \frac{3}{\sqrt{10}}$ | M1 | Must have correct form and $z$. |
|  | 23.8 to 28.0 (3 sf) | A1 | CWO |
|  |  | 5 |  |
| 3(ii) | $0.03^{2} \quad(=0.0009)$ | B1 |  |
|  |  | 1 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4 | Assume trains are independent OR probability of being on time is constant | B1 | Must be in context |
|  | $\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { on time })=0.92 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { on time })<0.92 \end{aligned}$ | B1 | Both. <br> Allow ' $p$ ' or $\pi$ |
|  | 1- $\left({ }^{20} \mathrm{C}_{17} \times 0.92^{17} \times 0.08^{3}+{ }^{20} \mathrm{C}_{18} \times 0.92^{18} \times 0.08^{2}+20 \times 0.92^{19} \times 0.08+0.92^{20}\right)$ | M1 | Allow one end error Must have 1 - ... |
|  | $=0.0706(3 \mathrm{sf})$ | A1 |  |
|  | Compare with 0.05 | M1 | Valid comparison needed |
|  | No evidence that percentage less than $92 \%$ | A1FT | OE <br> No contradictions. <br> Method using normal approximation: <br> If the first B1B1 is earned then: $\mathrm{CV}-1.566\left(\text { from } \frac{16.5-20 \times 0.92}{\sqrt{20 \times 0.92 \times 0.08}}, \text { with continuity correction }\right)$ <br> or <br> $\mathrm{CV}=1.978$ (without continuity correction) <br> comp $z=1.645$ <br> No evidence that \% decreased (1.566) or evidence that \% decreased (1.978) is awarded SC2 after B marks |
|  |  | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5(i) | Po(3) | B1 | SOI |
|  | $\mathrm{e}^{-3}\left(\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!}\right)$ | M1 | Allow one or two extra terms (2 or 6 or both) |
|  | 0.493 (3 sf) | A1 |  |
|  |  | 3 |  |
| 5(ii) | $\begin{aligned} & \text { A correct equation from } \mathrm{P}(0)=\mathrm{P}(2) \\ & \left(\text { leading to } 1=\frac{\lambda^{2}}{2}\right) \end{aligned}$ | M1 |  |
|  | $\lambda=\sqrt{2}$ or $1.41(3 \mathrm{sf})$ | A1 | CWO |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5(iii)(a) | Correct inequality $\left(\right.$ leading to $\left.\frac{5.2^{n}}{n!}<\frac{5.2^{n+1}}{(n+1)!}\right)$ | B1 |  |
|  |  | 1 |  |
| 5(iii)(b) | $n+1<5.2 \text { or } 1<\frac{5.2}{n+1}$ | M1 | Simplify to a stage without exponentials, powers or factorials. |
|  | Largest $n$ is 4 | A1 |  |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(i) | $k \int_{0}^{3}\left(3 x-x^{2}\right) \mathrm{d} x=1$ | M1 | Attempt to integrate $\mathrm{f}(x)$ and $=1$ |
|  | $\begin{aligned} & k\left[\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right] \begin{array}{l} 3 \\ 0 \end{array} \\ & k\left(\frac{27}{2}-\frac{27}{3}\right)=1 \end{aligned}$ | A1 | Correct integral and limits |
|  | $k=\frac{2}{9}$ | A1 | AG <br> No errors seen |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(ii) | $\frac{2}{9} \int_{1}^{2}\left(3 x-x^{2}\right) \mathrm{d} x=\frac{2}{9}\left[\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right]_{1}^{2}=\frac{2}{9} \times\left(6-\frac{8}{3}-\frac{3}{2}+\frac{1}{3}\right)$ | M1 | Attempt to integrate $\mathrm{f}(x) \mathrm{d} x$ with limits 1 and 2 OE |
|  | $\frac{13}{27} \text { or } 0.481(3 \mathrm{sf})$ | A1 |  |
|  |  | 2 |  |
| 6(iii) | $y=3 x-x^{2}$ symmetrical about $x=\frac{3}{2}$ | M1 | Attempt $\frac{2}{9} \int_{0}^{3}\left(3 x^{2}-x^{3}\right) \mathrm{d} x$ |
|  | $\mathrm{E}(X)=\frac{3}{2}$ | A1 |  |
|  | $\frac{2}{9} \int_{0}^{3}\left(3 x^{3}-x^{4}\right) d x$ | M1 | Attempt to integrate $x^{2} \mathrm{f}(x)$ |
|  | $\begin{aligned} & =\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3}\left(=\frac{2}{9} \times \frac{243}{20}=\frac{27}{10}\right) \\ & \frac{{ }^{2} 7^{\prime}}{10}-\left(\frac{3^{\prime}}{2}\right)^{2} \end{aligned}$ | M1 | Subtract their $(\mathrm{E}(X))^{2}$ from their integral $x^{2} \mathrm{f}(x)$ with correct limits substituted |
|  | $\frac{9}{20}$ or 0.45 | A1 |  |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7(i) | $\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=546 \\ & \mathrm{H}_{1}: \text { Pop mean }>546 \end{aligned}$ | B1 | Both. Allow just $\mu$, but not just 'mean' |
|  | $\frac{581-546}{\frac{120}{\sqrt{40}}}$ | M1 | Standardising. Need $\frac{120}{\sqrt{40}}$ |
|  | $=1.845$ allow 1.844 | A1 | Allow 1.84 or 1.85 AWRT |
|  | $1.845<1.96$ | M1 | OE. Or area comparison $0.0325>0.025$ or large probabilities |
|  | No evidence that mean weekly income has increased | A1FT | No contradictions. <br> If $\mathrm{H}_{1}: \neq$, and 2.241 used, max B0M1A1M1A0 |
|  |  | 5 |  |
| 7(ii) | $\frac{a-546}{\frac{120}{\sqrt{40}}}=1.96$ | M1 | Standardise to find $a$. Need $\frac{120}{\sqrt{40}}$ and 546 and a value of $z$ |
|  | $a=583.19$ | A1 | Allow 583 to 3sf |
|  | $\frac{' 583.19 '-595}{\frac{120}{\sqrt{40}}}(=-0.622)$ | M1 | Standardise. Need $\frac{120}{\sqrt{40}}$ and 595 |
|  | $\phi\left({ }^{( }-0.622^{\prime}\right)=1-\phi\left({ }^{\prime} 0.622^{\prime}\right)$ | M1 | Consistent area |
|  | 0.267 | A1 |  |
|  |  | 5 |  |

