Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	9.6, 12.4	B1 B1	
		2	
1(ii)	6.6, 49.6	B1 B1	
		2	

Question	Answer	Marks	Guidance
2(i)	$\left(\lambda\left(=2\times2.4\right)=4.8\right)$	M1	Any λ
	$\left(\lambda \left(=2 \times 2.4\right) = 4.8\right)$ $e^{-4.8} \left(1 + 4 + \frac{4.8^2}{2} + \frac{4.8^3}{3!}\right)$		
	0.294 (3 sf)	A1	
		2	
2(ii)	$(\lambda (= 60 \times 2.4) = 144)$ N('144', '144')	M1	N and $\sigma^2 = \mu$ SOI
	$\frac{139.5 - 144'}{\sqrt{144'}} (= -0.375)$	M1	Allow with no continuity correction
	φ('0.375')	M1	Correct area consistent with their working
	0.646 (3 sf)	A1	
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	Assume population is normally distributed	B1	
	$\overline{x} = 25.9$	B1	Allow $\frac{259}{10}$
	<i>z</i> =2.17	B1	
	$'25.9'\pm z\times\frac{3}{\sqrt{10}}$	M1	Must have correct form and <i>z</i> .
	23.8 to 28.0 (3 sf)	A1	CWO
		5	
3(ii)	0.03^2 (=0.0009)	B1	
		1	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

<u>9709_w19_ms_</u>73

Question	Answer	Marks	Guidance
4	Assume trains are independent OR probability of being on time is constant	B1	Must be in context
	H ₀ : P(on time)=0.92 H ₁ : P(on time)<0.92	B1	Both. Allow 'p' or π
	$1 - \left({}^{20}\text{C}_{17} \times 0.92^{17} \times 0.08^3 + {}^{20}\text{C}_{18} \times 0.92^{18} \times 0.08^2 + 20 \times 0.92^{19} \times 0.08 + 0.92^{20} \right)$	M1	Allow one end error Must have 1 –
	=0.0706 (3 sf)	A1	
	Compare with 0.05	M1	Valid comparison needed
	No evidence that percentage less than 92%	A1FT	OE No contradictions. <u>Method using normal approximation:</u> If the first B1B1 is earned then: $CV - 1.566 \left(from \frac{16.5 - 20 \times 0.92}{\sqrt{20 \times 0.92 \times 0.08}} \right)$, with continuity correction or CV=1.978 (without continuity correction) comp <i>z</i> =1.645 No evidence that % decreased (1.566) or evidence that % decreased (1.978) is awarded SC2 after B marks
		6	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	Po(3)	B1	SOI
	$e^{-3}\left(\frac{3^3}{3!} + \frac{3^4}{4!} + \frac{3^5}{5!}\right)$	M1	Allow one or two extra terms (2 or 6 or both)
	0.493 (3 sf)	A1	
		3	
5(ii)	A correct equation from $P(0) = P(2)$	M1	
	$\left(\text{leading to } 1 = \frac{\lambda^2}{2}\right)$		
	$\lambda = \sqrt{2} \text{ or } 1.41 (3 \text{ sf})$	A1	CWO
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
5(iii)(a)	Correct inequality $\left(\text{leading to } \frac{5 \cdot 2^n}{n!} < \frac{5 \cdot 2^{n+1}}{(n+1)!} \right)$	B1	
		1	
5(iii)(b)	$n+1 < 5.2$ or $1 < \frac{5.2}{n+1}$	M1	Simplify to a stage without exponentials, powers or factorials.
	Largest <i>n</i> is 4	A1	
		2	

Question	Answer	Marks	Guidance
6(i)	$k \int_{0}^{3} (3x - x^2) dx = 1$	M1	Attempt to integrate $f(x)$ and $= 1$
	$k \left[\frac{3}{2} x^2 - \frac{x^3}{3} \right]_0^3$ $k \left(\frac{27}{2} - \frac{27}{3} \right) = 1$	A1	Correct integral and limits
	$k = \frac{2}{9}$	A1	AG No errors seen
		3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
6(ii)	$\frac{2}{9}\int_{1}^{2} (3x - x^{2}) dx = \frac{2}{9} \left[\frac{3}{2}x^{2} - \frac{x^{3}}{3} \right]_{1}^{2} = \frac{2}{9} \times \left(6 - \frac{8}{3} - \frac{3}{2} + \frac{1}{3} \right)$	M1	Attempt to integrate $f(x) dx$ with limits 1 and 2 OE
	$\frac{13}{27}$ or 0.481 (3 sf)	A1	
		2	
6(iii)	$y = 3x - x^2$ symmetrical about $x = \frac{3}{2}$	M1	Attempt $\frac{2}{9} \int_{0}^{3} (3x^2 - x^3) dx$
	$E(X) = \frac{3}{2}$	A1	
	$\frac{2}{9}\int_{0}^{3} (3x^{3} - x^{4}) \mathrm{d}x$	M1	Attempt to integrate $x^2 f(x)$
	$=\frac{2}{9}\left[\frac{3x^4}{4} - \frac{x^5}{5}\right]_0^3 \left(=\frac{2}{9} \times \frac{243}{20} = \frac{27}{10}\right)$	M1	Subtract their $(E(X))^2$ from their integral $x^2f(x)$ with correct limits substituted
	$\frac{27'}{10} - \left(\frac{3'}{2}\right)^2$		
	$\frac{9}{20}$ or 0.45	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

9709 w19 ms 73

			<u>9709_w19_iiis_</u>	
Question	Answer	Marks	Guidance	
7(i)	H ₀ : Pop mean=546 H ₁ : Pop mean>546	B1	Both. Allow just μ , but not just 'mean'	
	$\frac{\frac{581 - 546}{120}}{\frac{1}{\sqrt{40}}}$	M1	Standardising. Need $\frac{120}{\sqrt{40}}$	
	=1.845 allow 1.844	A1	Allow 1.84 or 1.85 AWRT	
	1.845<1.96	M1	OE. Or area comparison 0.0325>0.025 or large probabilities	
	No evidence that mean weekly income has increased	A1FT	No contradictions. If $H_1: \neq$, and 2.241 used, max B0M1A1M1A0	
		5		
7(ii)	$\frac{a - 546}{\frac{120}{\sqrt{40}}} = 1.96$	M1	Standardise to find <i>a</i> . Need $\frac{120}{\sqrt{40}}$ and 546 and a value of <i>z</i>	
	<i>a</i> = 583.19	A1	Allow 583 to 3sf	
	$\frac{\frac{583.19'-595}{120}}{\frac{120}{\sqrt{40}}} (=-0.622)$	M1	Standardise. Need $\frac{120}{\sqrt{40}}$ and 595	
	$\phi(`-0.622')=1-\phi(`0.622')$	M1	Consistent area	
	0.267	A1		
		5		