Question	Answer	Marks	Guidance
1(i)	Binomial	B1	
	$n=500$ and $p=\frac{1}{150}$ or 0.00667	B1	Or B $\left(500, \frac{1}{150}\right)$ for B1B1
		2	
1(ii)	Poisson	B1	
	n large and mean $=\frac{10}{3}$ or 3.3 or better, which is <5	B1	Accept $n>50$
		2	
1 (iii)	$1-e^{-\frac{10}{3}} \times\left(1+\frac{10}{3}+\frac{\left(\frac{10}{3}\right)^{2}}{2}\right)$	M1	$1-\mathrm{P}(X=0,1,2)$
	$=1-0.353$	A1	Correct expression with $\lambda=3.3$ or better
	$=0.647$ (3 sf)	A1	SC Use of Binomial scores B1 for 0.648. Use of Normal scores B1 for $0.67(0)$ to 0.677
		3	

Question	Answer	Marks	Guidance
2(i)(a)	Assume standard deviation for the region is 7.1	B1	Or standard deviation is same as for whole population OE
	$\frac{63.2-65.2}{\frac{7.1}{\sqrt{n}}}=-2.182$	M1	Attempt to find correct equation (accept +2.182)
	$n=\{-2.182 \times 7.1 \div(-2)\}^{2}$	A1	Any correct expression for n or \sqrt{n}. SOI
	$n=60$	A1	CWO. Must be an integer
		4	
2(i)(b)	H_{0} : population mean $($ or $\mu)=65.2$ H_{1} : population mean $($ or $\mu)<65.2$	B1	Not just 'mean'
	$2.182>1.751$	M1	Or valid area comparison.
	There is evidence that animals are shorter in this region	A1	CWO. No contradictions
		3	
2(ii)	Population unknown or population not given as normal	B1	Allow population not normal. Accept distribution of X unknown.
		1	

Question	Answer	Marks	Guidance
3(i)	$\operatorname{est}(\mu)=\frac{25110}{50} \quad(=502.2)$	B1	
	$\operatorname{est}\left(\sigma^{2}\right)=\frac{50}{49}\left(\frac{12610300}{50}-\frac{25110}{50}\right)^{2}\left(=\frac{50}{49} \times \frac{58}{50}=1.1836\right)$	M1	OE
	$1.18(3 \mathrm{sf}) \text { or } \frac{58}{49}$	A1	Accept SD $=1.0879$
	$z=2.054$ or 2.055	B1	
	$502.2 \pm z \times \frac{\sqrt{1.1836^{\prime}}}{\sqrt{50}}$	M1	Must be of correct form.
	501.9 to 502.5 (1dp)	A1	CWO. Must be in interval. SC accept use of biased variance (1.16) for M1 A1
		6	
3(ii)	More confident or z would be greater, Hence wider.	B1	OE Reason needed
		1	

Question	Answer	Marks	Guidance
4(i)	$\begin{aligned} & \frac{1}{2} \times a \times \frac{a}{2}=1 \text { or } \frac{1}{2} \int_{0}^{a} x \mathrm{~d} x=1 \\ & \frac{a^{2}}{4}=1 \mathrm{OE} \end{aligned}$	M1	Attempt at triangle area or integral $\mathrm{f}(x)$ and $=1$,
	$a=2$	A1	
		2	
4(ii)	$\frac{1}{2} \int_{0}^{2} x^{2} \mathrm{~d} x$	M1	Attempt integral $x \mathrm{f}(x)$
	$=\left[\frac{x^{3}}{6}\right]_{0}^{2}$	M1	Correct integral and limits 0 to their ' a '
	$\left(=\frac{8}{6}\right)=\frac{4}{3}$	A1	$\begin{aligned} & \text { AG } \\ & \text { CWO } \end{aligned}$
		3	

Question	Answer	Marks	Guidance
4(iii)	$P\left(X<\frac{4}{3}\right)=\frac{1}{2} \int_{0}^{\frac{4}{3}} x \mathrm{~d} x$	M1	Attempt integral $\mathrm{f}(x)$ between correct limits
	$=\frac{4}{9}$	A1	or $\frac{5}{9}$
	$P(E(X)<X<m)=\frac{1}{2}-\frac{4}{4}^{\prime}$	M1	or $\frac{5}{9}-\frac{1}{2}$
	$\frac{1}{18}$	A1	
	Alternative method for question 4(iii)		
	Attempt to find m	M1	
	$m=\sqrt{2}$	A1	
	Integrate $\mathrm{f}(x)$ between $\frac{4}{3}$ and ' $\sqrt{2}$ '	M1	
	$\frac{1}{18}$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	mean $=3250$ var. $=61$	B1	Or mean $=325$ var. $=\frac{6.1}{10}$
	$\frac{3240-3250}{\sqrt{61}}(=-1.280)$	M1	Standardise with their values (no mixed methods)
	$\phi('-1.280 ')=1-\phi(' 1.280)$	M1	Area consistent with their figures
	0.100	A1	Allow 0.1
		4	
5(ii)	$\mathrm{E}(\mathrm{D})=325-2 \times 167=-9$	B1	Accept ± 9
	$\operatorname{Var}(\mathrm{D})=6.1+2^{2} \times 5.6(=28.5)$	B1	
	$\frac{0-(-9)}{\sqrt{28.5}}(=1.686)$	M1	Standardising with their values. Must have a combination attempt on denominator and $\sqrt{ }$
	$1-\phi\left(' 1.686{ }^{\prime}\right)$	M1	Area consistent with their figures
	0.0459	A1	
		5	

Question	Answer	Marks	Guidance
6 (i)	H_{0} : Pop mean (or λ or μ) is 1.1 H_{1} : Pop mean (or λ or μ) is more than 1.1	B1	
	$\mathrm{P}(X \geqslant 4)=1-\mathrm{e}^{-1.1}\left(1+1.1+\frac{1.1^{2}}{2}+\frac{1.1^{3}}{3!}\right)$	M1	Correct expression for either $\mathrm{P}(X \geqslant 4)$ or $\mathrm{P}(X \geqslant 5)$
	0.0257	A1	Correct value of either $\mathrm{P}(X \geqslant 4)$ or $\mathrm{P}(X \geqslant 5)$
	$\mathrm{P}(X \geqslant 5)=0.0257-\mathrm{e}^{-1.1} \times \frac{1.1^{4}}{4!}=0.00544$	B1	B1 for the other value (Note use of $\mathrm{P}(X<4)=0.9743$ and $\mathrm{P}(X<5)=0.99456$ can score only if comparison with 0.99 seen)
	$0.00544<0.01<0.0257$	M1	OE stated (valid comparison)
	There is evidence mean has increased	B1	SC P $(X \geqslant 6)=0.000968$ M1A1 Conclusion
		6	
6(ii)	Concluding mean has increased when it has not	B1	In context
	'0.00544'	B1FT	FT their $\mathrm{P}(X \geqslant 5)$, dep <0.01
		2	
6(iii)	$\mathrm{e}^{-7.0}\left(1+7+\frac{7^{2}}{2}+\frac{7^{3}}{3!}+\frac{7^{4}}{4!}\right)$	M1	Correct expression for $\mathrm{P}(X \leqslant 4 \mid \lambda=7.0)$
	0.173 (3 sf)	A1	
		2	

