9709/72

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
1(i)	Binomial	B1	
	$n = 500 \text{ and } p = \frac{1}{150}$ or 0.00667	B1	Or $B\left(500, \frac{1}{150}\right)$ for B1B1
		2	
1(ii)	Poisson	B1	
	<i>n</i> large and mean = $\frac{10}{3}$ or 3.3 or better, which is < 5	B1	Accept $n > 50$
		2	
1(iii)	$1 - e^{-\frac{10}{3}} \times \left(1 + \frac{10}{3} + \frac{\left(\frac{10}{3}\right)^2}{2}\right)$	M1	1-P(X=0, 1, 2)
	= 1 - 0.353	A1	Correct expression with λ =3.3 or better
	= 0.647 (3 sf)	A1	SC Use of Binomial scores B1 for 0.648. Use of Normal scores B1 for 0.67(0) to 0.677
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(i)(a)	Assume standard deviation for the region is 7.1	B1	Or standard deviation is same as for whole population OE
	$\frac{63.2 - 65.2}{\frac{7.1}{\sqrt{n}}} = -2.182$	M1	Attempt to find correct equation (accept +2.182)
	$n = \{-2.182 \times 7.1 \div (-2)\}^2$	A1	Any correct expression for <i>n</i> or \sqrt{n} . SOI
	n = 60	A1	CWO. Must be an integer
		4	
2(i)(b)	H ₀ : population mean (or μ) = 65.2 H ₁ : population mean (or μ) < 65.2	B1	Not just 'mean'
	2.182 > 1.751	M1	Or valid area comparison.
	There is evidence that animals are shorter in this region	A1	CWO. No contradictions
		3	
2(ii)	Population unknown or population not given as normal	B1	Allow population not normal. Accept distribution of X unknown.
		1	

9709/72

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
3(i)	$est(\mu) = \frac{25110}{50}$ (= 502.2)	B1	
	$\operatorname{est}(\sigma^{2}) = \frac{50}{49} \left(\frac{12610300}{50} - \frac{25110}{50}\right)^{2} \left(=\frac{50}{49} \times \frac{58}{50} = 1.1836\right)$	M1	OE
	1.18 (3 sf) or $\frac{58}{49}$	A1	Accept SD = 1.0879
	z = 2.054 or 2.055	B1	
	$502.2 \pm z \times \frac{\sqrt{1.1836'}}{\sqrt{50}}$	M1	Must be of correct form.
	501.9 to 502.5 (1dp)	A1	CWO. Must be in interval. SC accept use of biased variance (1.16) for M1 A1
		6	
3(ii)	More confident or <i>z</i> would be greater, Hence wider.	B1	OE Reason needed
		1	

9709/72

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2} \times a \times \frac{a}{2} = 1$ or $\frac{1}{2} \int_{0}^{a} x dx = 1$	M1	Attempt at triangle area or integral $f(x)$ and $= 1$,
	$\frac{a^2}{4} = 1 \text{ OE}$		
	<i>a</i> = 2	A1	
		2	
4(ii)	$\frac{1}{2}\int_{0}^{2}x^{2}\mathrm{d}x$	M1	Attempt integral $xf(x)$
	$=\left[\frac{x^3}{6}\right]_0^2$	M1	Correct integral and limits 0 to their 'a'
	$\left(=\frac{8}{6}\right)=\frac{4}{3}$	A1	AG CWO
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
4(iii)	$P\left(X < \frac{4}{3}\right) = \frac{1}{2} \int_{0}^{\frac{4}{3}} x dx$	M1	Attempt integral $f(x)$ between correct limits
	$=\frac{4}{9}$	A1	or $\frac{5}{9}$
	$P(E(X) < X < m) = \frac{1}{2} - \frac{4}{9}$	M1	or $\frac{5}{9} - \frac{1}{2}$
	$\frac{1}{18}$	A1	
	Alternative method for question 4(iii)		
	Attempt to find <i>m</i>	M1	
	$m = \sqrt{2}$	A1	
	Integrate $f(x)$ between $\frac{4}{3}$ and $\sqrt{2}$ '	M1	
	$\frac{1}{18}$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

9<u>709_w19_ms_</u>72

Question	Answer	Marks	Guidance
5(i)	mean = 3250 var. = 61	B1	Or mean = 325 var. = $\frac{6.1}{10}$
	$\frac{3240 - 3250}{\sqrt{61}} (= -1.280)$	M1	Standardise with their values (no mixed methods)
	$\phi(-1.280') = 1 - \phi(1.280)$	M1	Area consistent with their figures
	0.100	A1	Allow 0.1
		4	
5(ii)	$E(D) = 325 - 2 \times 167 = -9$	B1	Accept ±9
	$Var(D) = 6.1 + 2^2 \times 5.6 \ (= 28.5)$	B1	
	$\frac{0 - (-9)}{\sqrt{28.5}} (= 1.686)$	M1	Standardising with <i>their</i> values. Must have a combination attempt on denominator and $$
	1 - \phi('1.686')	M1	Area consistent with their figures
	0.0459	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	H ₀ : Pop mean (or λ or μ) is 1.1 H ₁ : Pop mean (or λ or μ) is more than 1.1	B1	
	$P(X \ge 4) = 1 - e^{-1.1} \left(1 + 1.1 + \frac{1.1^2}{2} + \frac{1.1^3}{3!} \right)$	M1	Correct expression for either $P(X \ge 4)$ or $P(X \ge 5)$
	0.0257	A1	Correct value of either $P(X \ge 4)$ or $P(X \ge 5)$
	$P(X \ge 5) = 0.0257 - e^{-1.1} \times \frac{1.1^4}{4!} = 0.00544$	B1	B1 for the other value (Note use of $P(X < 4) = 0.9743$ and $P(X < 5) = 0.99456$ can score only if comparison with 0.99 seen)
	0.00544 < 0.01 < 0.0257	M1	OE stated (valid comparison)
	There is evidence mean has increased	B1	SC $P(X \ge 6) = 0.000968$ M1A1 Conclusion B1
		6	
6(ii)	Concluding mean has increased when it has not	B1	In context
	'0.00544'	B1FT	FT <i>their</i> $P(X \ge 5)$, dep < 0.01
		2	
6(iii)	$e^{-7.0} \left(1 + 7 + \frac{7^2}{2} + \frac{7^3}{3!} + \frac{7^4}{4!} \right)$	M1	Correct expression for $P(X \le 4 \lambda = 7.0)$
	0.173 (3 sf)	A1	
		2	