9709/63

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance				
1(i)	$\frac{120}{300} = 0.4$	B1	OE				
		1					
1(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left(\frac{8}{15} \times \frac{3}{4}\right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product				
	As P(male \cap not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion				
	The events are Independent						
	Alternative method for question 1(ii)						
	P(male ∩ not piano) = $\frac{120}{300}$; P(not piano) = $\frac{225}{300}$	M1	P(M P') or P(P' M) unsimplified seen with <i>their</i> probs with correctly named events				
	$P(M \mid \text{not piano}) = \frac{\frac{120}{300}}{\frac{225}{300}} = \frac{120}{225} = \frac{8}{15} = P(\text{male})$ or $P(\text{not piano} \mid M) = \frac{\frac{120}{300}}{\frac{160}{160}} = \frac{120}{160} = \frac{3}{4} = P(\text{not piano})$	A1	Numerical comparison with P(M) or P(P') and correct conclusion				
	300 Therefore the events are Independent						
		2					

9709/63

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
2(i)	$\frac{9!}{2!3!} = 30240$	B1	9! Divided by at least one of 2! or 3!
		B 1	Exact value
		2	
2(ii)	DR: $\frac{7!}{2!2!} = 1260$ DO: $\frac{7!}{2!} = 840$	B1	7! Seen alone or as numerator in a term, can be multiplied not + or –
		B1	One term correct, unsimplified
	Total = 2100	B1	Final answer
		3	

Question	Answer	Marks	Guidance
3(i)	$3A 2D 2M : {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} (= 1200)$ $4A 2D 1M : {}^{6}C_{4} \times {}^{5}C_{2} \times {}^{4}C_{1} (= 600)$ $3A 3D 1M : {}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{1} (= 800)$	M1	${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}, x + y + z = 7$
		A1	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total = 2600	A1	Correct answer SC1 ${}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{1} \times {}^{9}C_{1} = 7200$
		4	

Question	Answer	Marks	Guidance
3(ii)	$^{7}C_{4} \times 1$	B 1	$^{7}C_{3}$ or $^{7}C_{4}$ seen anywhere
	35	B1	
		2	

Question	Answer	Marks	Guidance
4(i)	P(h < 148) = 0.67	B1	$z = \pm 0.44$ seen
	$\frac{h-148}{8} = 0.44$	M1	$z\text{-value} = \pm \frac{(h-148)}{8}$
	$151.52 \approx 152$	A1	CAO
		3	
4(ii)	$P(144 < X < 152) = P\left(\frac{144 - 148}{8} < Z < \frac{152 - 148}{8}\right)$	M1	Using \pm standardisation formula for either 144 or 152, $\mu = 148, \sigma = 8$ and no continuity correction, allow σ^2 or $\sqrt{\sigma}$
	$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) = 0.6915 - (1 - 0.6915) = 2 \times 0.6915 - 1$	M1	Correct final area legitimately obtained from $phi(their z_2) - phi(their z_1)$
	= 0.383	A1	Final probability answer
	$0.383 \times 120 = 45.96$ Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) \times 120, rounded to a whole number or truncated
		4	

October/November 2019

Question	Answer	Marks	Guidance
5(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (or t) [in] min(utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	(0, 0); (10, 16); (20, 50); (30, 106); (50, 146); (70,176); (90,200)
		2	
5(ii)	29	B 1	$28 \leq \text{median} \leq 30$
		1	
5(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	$36 \leq \text{Ans} \leq 39$ or FT from <i>their</i> graph SC1 unsupported answer in range
		2	
5(iv)	Frequencies 16 34 56 40 30 24	B1	Seen. Allow unsimplified
	Est. Mean = $\frac{5 \times 16 + 15 \times 34 + 25 \times 56 + 40 \times 40 + 60 \times 30 + 80 \times 24}{200}$	M1	At least 4 correct midpoints (5, 15, 25, 40, 60, 80) used in a calculation
	$\frac{7310}{200}$	M1	Summing products of <i>their</i> 6 mid-points (not lower or upper bound or class width) × <i>their</i> frequencies / 200 (or <i>their</i> Σ f), unsimplified
	36.55	A1	Accept 36.6
		4	

October/November 2019

Question	Answer	Marks	Guidance
6(i)	$P(RR) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$	B1	OE
		1	
6(ii)	$\frac{P(RW) + P(WR)}{\frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7}}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	Alternative method for question 6(ii)		
	$1 - (P(RR) + P(WW)) 1 - \left(\frac{3}{28} + \frac{5}{8} \times \frac{4}{7}\right)$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
		2	
6(iii)	P(first red second red) = $\frac{their(\mathbf{i})}{their(\mathbf{i}) + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{28}}{\frac{21}{56}}$	M1	Conditional probability formula used consistent with <i>their</i> probabilities or correct
	$=\frac{2}{7}$	A1	OE
		2	

October/November 2019

Question	Answer				swer	Marks	Guidance
6(iv)	х р	0 $\frac{10}{28}$	$\frac{1}{\frac{15}{28}}$	$\frac{2}{\frac{3}{28}}$		B1	Probability distribution table with correct values of x and at least one correct probability placed. Extra x values allowed with probability of zero stated.
						B1FT	Fully correct FT P(2) = <i>their</i> (i), P(1) = <i>their</i> (ii), $\Sigma(p) = 1$.
						2	
6(v)	$E(X) = \frac{30}{56} + \frac{12}{56} = \frac{42}{46} \left(=\frac{3}{4}\right)$				B1	May be implied by use in variance formula	
	$Var(X) = \frac{30}{56} + \frac{24}{56} - \left(their \frac{3}{4}\right)^2$					M1	Substitute into correct variance formula, must have ' – <i>their</i> mean ² ' Must be for 2 or more non-zero <i>x</i> -values
	$\frac{45}{112}$ or 0	.402				A1	Correct final answer
						3	

Question	Answer	Marks	Guidance
7(i)(a)	$P(0, 1, 2) = {}^{6}C_{0} \ 0.3^{0} \ 0.7^{6} + {}^{6}C_{1} \ 0.3^{1} \ 0.7^{5} + {}^{6}C_{2} \ 0.3^{2} \ 0.7^{4}$	M1	Binomial term of form ${}^{6}C_{x}p^{x}(1-p)^{6-x}$ $0 any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
	0.744	A1	Correct final answer
		3	

9709/63

Cambridge International AS/A Level – Mark Scheme PUBLISHED

9709	w19	ms	63

Question	Answer	Marks	Guidance
7(i)(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	0.25^n seen alone, $1 \le n \le 6$
	P(6 support neither choir) = 0.25^6	A1	Correct final answer
	$= 0.000244 \text{ or } \frac{1}{4096}$		
		2	
7(ii)	Mean = $240 \times 0.25 = 60$ Variance = $240 \times 0.25 \times 0.75 = 45$	B1FT	Correct unsimplified 240p and 240pq where $p = their$ P(support neither choir) or 0.25
	$P(X < 50) = P\left(Z < \frac{49.5 - 60}{\sqrt{45}}\right) = P(Z < -1.565)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '49.5'.
		M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	1 - 0.9412	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (< 0.5 if z is -ve, > 0.5 if z is +ve)
	0.0588	A1	Correct final answer
		5	