Question	Answer	Marks	Guidance
1(i)	$\frac{120}{300}=0.4$	B1	OE
		1	
1(ii)	$\mathrm{P}($ male $) \times \mathrm{P}($ not piano $)=\frac{160}{300} \times \frac{225}{300}\left(\frac{8}{15} \times \frac{3}{4}\right)=\frac{2}{5}$	M1	$\mathrm{P}(\mathrm{M}) \times \mathrm{P}\left(\mathrm{P}^{\prime}\right)$ seen Can be unsimplified but the events must be named in a product
	As $\mathrm{P}($ male \cap not piano $)$ also $=\frac{120}{300}=\frac{2}{5}$ The events are Independent	A1	Numerical comparison and correct conclusion
	Alternative method for question 1(ii)		
	$\mathrm{P}(\text { male } \cap \text { not piano })=\frac{120}{300} ; \mathrm{P}(\text { not piano })=\frac{225}{300}$	M1	$\mathrm{P}\left(\mathrm{M} \mid \mathrm{P}^{\prime}\right)$ or $\mathrm{P}\left(\mathrm{P}^{\prime} \mid \mathrm{M}\right)$ unsimplified seen with their probs with correctly named events
	$\mathrm{P}(\mathrm{M} \mid$ not piano $)=\frac{\frac{120}{300}}{\frac{225}{300}}=\frac{120}{225}=\frac{8}{15}=\mathrm{P}($ male $)$ or $\mathrm{P}($ not piano $\mid \mathrm{M})=\frac{\frac{120}{300}}{\frac{160}{300}}=\frac{120}{160}=\frac{3}{4}=\mathrm{P}($ not piano $)$ Therefore the events are Independent	A1	Numerical comparison with $\mathrm{P}(\mathrm{M})$ or $\mathrm{P}\left(\mathrm{P}^{\prime}\right)$ and correct conclusion
		2	

Question	Answer	Marks	Guidance
2(i)	$\frac{9!}{2!3!}=30240$	B1	9 ! Divided by at least one of 2 ! or 3!
		B1	Exact value
		2	
2(ii)	$\begin{aligned} & D_{-------} \text {R: } \frac{7!}{2!2!}=1260 \\ & D_{-------} \text {O: } \frac{7!}{3!}=840 \end{aligned}$	B1	7! Seen alone or as numerator in a term, can be multiplied not + or -
		B1	One term correct, unsimplified
	Total $=2100$	B1	Final answer
		3	

Question	Answer	Marks	Guidance
3(i)	$\begin{aligned} & 3 A 2 D 2 M:{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}(=1200) \\ & 4 A 2 D 1 M:{ }^{6} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}(=600) \\ & 3 A 3 D 1 M:{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}(=800) \end{aligned}$	M1	${ }^{6} \mathrm{C}_{x} \times{ }^{5} \mathrm{C}_{y} \times{ }^{4} \mathrm{C}_{z}, x+y+z=7$
		A1	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total $=2600$	A1	Correct answer SC1 ${ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1}=7200$
		4	

| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: | ---: |
| 3 (ii) | ${ }^{7} \mathrm{C}_{4} \times 1$ | $\mathbf{B 1}$ | ${ }^{7} \mathrm{C}_{3}$ or ${ }^{7} \mathrm{C}_{4}$ seen anywhere |
| | 35 | $\mathbf{B 1}$ | |
| | | $\mathbf{2}$ | |

Question	Answer	Marks	Guidance
4(i)	$\mathrm{P}(h<148)=0.67$	B1	$z= \pm 0.44$ seen
	$\frac{h-148}{8}=0.44$	M1	$z \text {-value }= \pm \frac{(h-148)}{8}$
	$151.52 \approx 152$	A1	CAO
		3	
4(ii)	$\mathrm{P}(144<X<152)=\mathrm{P}\left(\frac{144-148}{8}<Z<\frac{152-148}{8}\right)$	M1	Using \pm standardisation formula for either 144 or 152, $\mu=148, \sigma=8$ and no continuity correction, allow σ^{2} or $\sqrt{ } \sigma$
	$=\mathrm{P}\left(-\frac{1}{2}<Z<\frac{1}{2}\right)=0.6915-(1-0.6915)=2 \times 0.6915-1$	M1	Correct final area legitimately obtained from phi $\left(\right.$ their $\left.z_{2}\right)-\operatorname{phi}\left(\right.$ their $\left.z_{1}\right)$
	$=0.383$	A1	Final probability answer
	$0.383 \times 120=45.96$ Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) $\times 120$, rounded to a whole number or truncated
		4	

Question	Answer	Marks	Guidance
5(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (ort) [in] min(utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	$\begin{aligned} & (0,0) ;(10,16) ;(20,50) ;(30,106) ;(50,146) ;(70,176) \text {; } \\ & (90,200) \end{aligned}$
		2	
5(ii)	29	B1	$28 \leqslant$ median $\leqslant 30$
		1	
5(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	$36 \leqslant$ Ans $\leqslant 39$ or FT from their graph SC1 unsupported answer in range
		2	
5(iv)	Frequencies 163456403024	B1	Seen. Allow unsimplified
	$\text { Est. Mean }=\frac{5 \times 16+15 \times 34+25 \times 56+40 \times 40+60 \times 30+80 \times 24}{200}$	M1	At least 4 correct midpoints $(5,15,25,40,60,80)$ used in a calculation
	$\frac{7310}{200}$	M1	Summing products of their 6 mid-points (not lower or upper bound or class width) \times their frequencies / 200 (or their $\sum \mathrm{f}$), unsimplified
	36.55	A1	Accept 36.6
		4	

Question	Answer	Marks	Guidance
6(i)	$\mathrm{P}(\mathrm{RR})=\frac{3}{8} \times \frac{2}{7}=\frac{3}{28}$	B1	OE
		1	
6(ii)	$\begin{aligned} & \mathrm{P}(\mathrm{RW})+\mathrm{P}(\mathrm{WR}) \\ & \frac{3}{8} \times \frac{5}{7}+\frac{5}{8} \times \frac{3}{7} \end{aligned}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	Alternative method for question 6(ii)		
	$\begin{aligned} & 1-(\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{WW}) \\ & 1-\left(\frac{3}{28}+\frac{5}{8} \times \frac{4}{7}\right) \end{aligned}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
		2	
6(iii)	$\mathrm{P}(\text { first red } \mid \text { second red })=\frac{\text { their }(\mathbf{i})}{\text { their }(\mathbf{i})+\frac{5}{8} \times \frac{3}{7}}=\frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7}+\frac{5}{8} \times \frac{3}{7}}=\frac{\frac{3}{28}}{\frac{21}{56}}$	M1	Conditional probability formula used consistent with their probabilities or correct
	$=\frac{2}{7}$	A1	OE
		2	

Question	Answer	Marks	Guidance
7 7(i)(a)	$\mathrm{P}(0,1,2)={ }^{6} \mathrm{C}_{0} 0.3^{0} 0.7^{6}+{ }^{6} \mathrm{C}_{1} 0.3^{1} 0.7^{5}+{ }^{6} \mathrm{C}_{2} 0.3^{2} 0.7^{4}$	$\mathbf{M 1}$	Binomial term of form ${ }^{6} \mathrm{C}_{x} p^{x}(1-p)^{6-x} \quad 0<p<1$ any $p, x \neq 6,0$
	$0.1176 \ldots+0.3025 \ldots+0.3241 \ldots$	$\mathbf{A 1}$	Correct unsimplified answer
	0.744	$\mathbf{A 1}$	Correct final answer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)(b)	$\mathrm{P}($ support neither choir $)=1-(0.3+0.45)=0.25$	M1	0.25^{n} seen alone, $1<n \leqslant 6$
	$\begin{aligned} & P(6 \text { support neither choir })=0.25^{6} \\ & =0.000244 \text { or } \frac{1}{4096} \end{aligned}$	A1	Correct final answer
		2	
7(ii)	$\begin{aligned} & \text { Mean }=240 \times 0.25=60 \\ & \text { Variance }=240 \times 0.25 \times 0.75=45 \end{aligned}$	B1FT	Correct unsimplified 240p and 240pq where $\mathrm{p}=$ their P (support neither choir) or 0.25
	$\mathrm{P}(X<50)=\mathrm{P}\left(Z<\frac{49.5-60}{\sqrt{45}}\right)=\mathrm{P}(Z<-1.565)$	M1	Substituting their μ and σ (condone σ^{2}) into the \pm Standardisation Formula with a numerical value for ' 49.5 '.
		M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	$1-0.9412$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}<\ldots)$ in final solution, $(<0.5$ if z is $-\mathrm{ve},>0.5$ if z is +ve$)$
	0.0588	A1	Correct final answer
		5	

