Question	Answer	Marks	Guidance
1(i)	$\begin{aligned} & \text { Median }=51 \\ & \mathrm{UQ}=57.5, \mathrm{LQ}=40 \end{aligned}$	B1	
	$\mathrm{IQR}=\mathrm{UQ}-\mathrm{LQ}$	M1	$55 \leqslant \mathrm{UQ} \leqslant 62-38 \leqslant \mathrm{LQ} \leqslant 45$
	17.5	A1	NFWW
		3	
1(ii)	Result will be disproportionately affected by 110	B1	Affected by an extreme/large value There is a large outlier ...contains outliers such as $110 \ldots$ Not 'mean affected by extreme values'
		1	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$0.4 x+0.6 \times 2 x=0.36$ or $0.4(1-x)+0.6(1-2 x)=0.64$	M1	$0.4 a+(1-0.4) b=0.36$ or $0.64, a, b$ terms involving x
	$1.6 x=0.36$ $x=0.225$	A1	Fully justified by algebra AG
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(ii)	$\begin{aligned} & \mathrm{P}\left(\mathrm{H} \mid \mathrm{L}^{\prime}\right)= \\ & \frac{0.4(1-x)}{1-0.36}=\frac{0.4 \times(1-0.225)}{0.64}=\frac{0.4 \times 0.775}{0.4 \times 0.775+0.6 \times 0.55} \end{aligned}$	M1	Correct numerical numerator of a fraction. Allow unsimplified.
		M1	Denominator 0.36 or 0.64 . Allow unsimplified.
	$\frac{31}{64} \text { or } 0.484$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$\begin{array}{lllll}0.5 & 2.4 & 3 & 1.4 & 0.4\end{array}$	M1	At least 3 frequency densities calculated (frequency \div class width) e.g. $\left(\frac{10}{20}, \frac{10}{19}\right.$ or $\left.\frac{10}{19.5}\right)$ may be read from graph using their scale, 3SF or exact
	All heights correct on graph.	A1	
	Bar ends of 9.5, 29.5, 39.5, 59.5, 89.5	B1	
	Axes labelled: Frequency density (fd) and speed/ $/ \mathrm{km} \mathrm{h}^{-1}$ (or appropriate title). Linear scales $9.5 \leqslant$ horizontal axis $\leqslant 89.5,0$ \leqslant vertical axis $\leqslant 3$, 5 bars with no gaps	B1	
		4	

Question	Answer	Marks	Guidance
3(ii)	$\begin{aligned} & \frac{19.5 \times 10+34.5 \times 24+44.5 \times 30+54.5 \times 14+74.5 \times 12}{\text { their } 90} \\ & =\frac{195+828+1335+763+894}{90} \\ & =\frac{4015}{90} \text { or } \frac{803}{18} \end{aligned}$	M1	Uses at least 4 midpoint attempts (e.g. 19.5 ± 0.5). Allow unsimplified expression.
	$44 \frac{11}{18} \text { or } 44.6\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$	A1	Final answer not an improper fraction NFWW
		2	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\mathrm{P}(8,9,10)={ }^{10} \mathrm{C}_{8} 0.66^{8} 0.34^{2}+{ }^{10} \mathrm{C} 90.66^{9} 0.34^{1}+0.66^{10}$	$\mathbf{M 1}$	Correct binomial term, ${ }^{10} C_{a} 0.66^{a}(1-0.66)^{b}$ $a+b=10,0<a, b<10$
		$\mathbf{A 1}$	Correct unsimplified expression
	0.284	$\mathbf{B 1}$	CAO
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$\begin{aligned} & n p=0.66 \times 150=99 \\ & n p q=0.66 \times(1-0.66) \times 150=33.66 \end{aligned}$	B1	Accept evaluated or unsimplified μ, σ^{2} numerical expressions, condone $\sigma=\sqrt{33.66}=5.8017$ or 5.802 CAO
	$\mathrm{P}(X>84)=\mathrm{P}\left(Z>\frac{84.5-99}{\sqrt{33.66}}\right)$	M1	\pm Standardise, $\frac{x-\text { their } 99}{\sqrt{\text { their } 33.66}}$, condone σ^{2}, x a value
		M1	84.5 or 83.5 used in their standardisation formula
	$(=\mathrm{P}(Z>-2.499))$	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938) SC if no standardisation formula seen, B2 $\mathrm{P}(Z>-2.499)=0.994$
		5	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & \mathrm{P}(X<45)=\mathrm{P}\left(Z<\frac{45-40}{8}\right) \\ & =\mathrm{P}(Z<0.625) \end{aligned}$	M1	\pm Standardise, no continuity correction, σ^{2} or $\sqrt{\sigma}$, formula must be seen
	0.734(0)	A1	CAO
		2	
6(ii)	$1-2(1-(i))=2(i)-1=2((i)-0.5)$	M1	Use result of part (i) or recalculated to find area OE
	0.468	A1ft	$0<$ FT from (i) <1 or correct.
		2	
6(iii)	$\begin{aligned} & \mathrm{P}(X<10)=48 / 500=0.096 \\ & z=-1.305 \end{aligned}$	B1	$z= \pm 1.305$
	$\begin{aligned} & \mathrm{P}(X>24)=76 / 500=0.152 \\ & z=1.028 \end{aligned}$	B1	$z= \pm 1.028$
	$\begin{aligned} & 10-\mu=-1.305 \sigma \\ & 24-\mu=1.028 \sigma \end{aligned}$	M1	Form 1 equation using 10 or 24 with $\mu, \sigma, z-$ value. Allow continuity correction, not $\sigma^{2}, \sqrt{\sigma}$
	$14=2.333 \sigma$	M1	OE Solve two equations in σ and μ to form equation in one variable
	$\sigma=6 .[00], \quad \mu=17.8[3]$	A1	CAO, WWW
		5	

Question	Answer	Marks	Guidance
7(iii)	$\begin{aligned} & \text { Number of arrangements }=\frac{7!}{3!} \\ & \text { Probability }=\frac{\text { their } \frac{7!}{3!}}{\text { their } \frac{9!}{3!2!}}=\frac{840}{30240} \end{aligned}$	M1	their identified number of arrangements with T at ends their identified total number of arrangements or $\frac{\frac{7!}{9!}}{\frac{9!}{n}} m, n$ integers >1
	$\frac{1}{36} \text { or } 0.0278$	A1	Final answer
		2	
7(iv)	$\begin{array}{lr} \text { OOT_-- }^{4}{ }^{4} \mathrm{C}_{2}=6 \\ \text { OOTT- }^{4} \mathrm{C}_{1}=4 \\ \text { OOOT_- }^{4} \mathrm{C}_{1}=4 \\ \text { OOOTT } & =1 \end{array}$	M1	${ }^{4} \mathrm{C}_{x}$ seen alone or ${ }^{4} \mathrm{C}_{x} \mathrm{x} k \geq 1, k$ an integer, $0<x<4$
		A1	${ }^{4} \mathrm{C}_{2} \times k, k=1$ oe or ${ }^{4} \mathrm{C}_{1} \times \mathrm{m}, m=1$ oe alone
		M1	Add 3 or 4 identified correct scenarios only, accept unsimplified
	$($ Total $)=15$	A1	CAO, WWW Only dependent on 2nd M mark
		4	

