Question	Answer	Marks	Guidance
1	$0.8 \times 0.6+0.2(1-x)=0.63$	M1	Equation of form $0.8 \times \mathrm{A}+0.2 \times \mathrm{B}=\mathrm{C}, \mathrm{A}, \mathrm{B}$ involving $1-x$ and 0.6 or 0.4 and $\mathrm{C}=0.63$ or 0.37
	$0.2 x=0.05$	M1	Correct unsimplified equation
	$x=0.25$	A1	
	Alternative method for question 1		
	$0.8 \times 0.4+0.2 x=1-0.63$	M1	Equation of form $0.8 \times \mathrm{A}+0.2 \times \mathrm{B}=\mathrm{C}, \mathrm{A}, \mathrm{B}$ involving x and 0.6 or 0.4 and $\mathrm{C}=0.63$ or 0.37
	$0.2 x=0.05$	M1	Correct unsimplified equation
	$x=0.25$	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	$1-\left({ }^{10} \mathrm{C}_{2} 0.42^{8} 0.58^{2}+{ }^{10} \mathrm{C}_{9} 0.42^{9} 0.58^{1}+0.42^{10}\right)$	M1	Binomial term of form $\left.{ }^{10} \mathrm{C}_{a} p^{a}(1-p)\right)^{b} 0<p<1$ any $p, 0 \leqslant a, b \leqslant 10$
		A1	Correct unsimplified expression
	0.983	A1	
		3	
2(ii)	$1-\mathrm{P}(0)>0.9950 .58^{n}<0.005$	M1	Equation or inequality involving 0.58^{n} or 0.42^{n} and 0.995 or 0.005
	$\begin{aligned} & n>\frac{\log 0.005}{\log 0.58} \\ & n>9.727 \end{aligned}$	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	$n=10$	A1	CAO
		3	

Question	Answer	Marks	Guidance	
$3(\mathrm{i})$	$\sum x=60 \times 20$	$=1200$	$\mathbf{B 1}$	
	$\frac{\sum x^{2}}{20}-60^{2}=4^{2}$	$\mathbf{M 1}$	Correct variance formula used, condone $=4$	
	$\sum x^{2}=3616 \times 20$	$=72320$	$\mathbf{A 1}$	Exact value
		$\mathbf{3}$		

Question	Answer	Marks	Guidance
3(ii)	$\begin{aligned} & \sum x=1200+550=1750 \\ & \sum x^{2}=72320+40500=112800 \end{aligned}$	M1	Summing both values of $\sum x$ and $\sum x^{2}$
	Mean $=\frac{\text { their } 1750}{30}=58.3$	B1FT	FT their 1750 (not 550 or 1200)/their $(20+10)$, accept unsimplified
	Variance $=\frac{\text { their } 112820}{30}-\left(\frac{\text { their } 1750}{30}\right)^{2} \quad(=357.89)$	M1	substitute their Σx and Σx^{2} into correct variance formula
	s.d. $=18.9$	A1	
		4	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\frac{1}{4}++p+p+\frac{3}{8}+4 p=1$	M1	Unsimplified sum of probabilities equated to 1
	$p=\frac{1}{16}$	$\mathbf{A 1}$	If method FT from their incorrect (i), expressions for E (X) and $\operatorname{Var}(X)$ must be seen unsimplified with all probabilities <1, condone not adding to 1
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(ii)	$[\mathrm{E}(X)]=-\frac{1}{4}+\frac{1}{16}+\frac{6}{8}+1=\frac{25}{16}$	M1	May be implied by use in Variance, accept unsimplified
	$[\operatorname{Var}(X)]=\frac{1}{4}+\frac{1}{16}+\frac{12}{8}+\frac{16}{4}-\left(\text { their } \frac{25}{16}\right)^{2}$	M1	Substitute into correct variance formula, must have '- their mean ${ }^{2}$,
	$\frac{863}{256}$ or 3.37	A1	OE
		3	
4(iii)	$\mathrm{P}(X=2 \mid X>0)=\frac{\mathrm{P}(\mathrm{X}=2)}{\mathrm{P}(\mathrm{X}>0)}=\frac{\frac{3}{8}}{\frac{11}{16}}$	M1	Conditional probability formula used consistent with their probabilities
	$\frac{6}{11}$ or 0.545	A1	
		2	

Question	Answer	Marks	Guidance
5(i)	$156-55=99$	B1	$98 \leqslant$ answer <100
		1	
5(ii)	90% of $160=144$	M1	144 seen, may be marked on graph
	$(\mathrm{L}=) 22$	A1	
		2	
5(iii)	$\begin{aligned} & \text { Median }=15.6 \\ & \mathrm{UQ}=18.8, \mathrm{LQ}=12.7 \end{aligned}$	B1	$15.5<$ median <15.8
	$\mathrm{IQR}=18.8-12.7$	M1	$18.5<\mathrm{UQ}<19-12.5<\mathrm{LQ}<13$
	6.1	A1	$6.0 \leqslant \mathrm{IQR} \leqslant 6.2$
		3	
5(iv)	The Median higher for Ransha (1st set of data)	B1	Any correct comparison of central tendency, must mention median
	IQR lower for Ransha (1st set of data)	B1	Any correct comparison of spread, must refer to IQR
		2	

Question	Answer	Marks	Guidance
6 (i)	$\frac{9!}{2!}=181440$	B1	Exact value
		1	
6(ii)	Total no of ways $=\frac{12!}{2!4!}=9979200(\mathrm{~A})$	B1	Accept unevaluated
	With Ss together $=\frac{11!}{4!}=1663200 \quad(B)$	B1	Accept unevaluated
	With Ss not together $=(\mathrm{B})-(\mathrm{A})$	M1	Correct or $\frac{12!}{m}-\frac{8!}{n}, m, n$ integers >1 or their identified total - their identified Ss together
	8316000	A1	Exact value
	Alternative method for question 6(ii)		
		B1	$10!\times k$ in numerator k integer $\geqslant 1$
	$\frac{10!}{4!} \times \frac{11 \times 10}{2!}$	B1	$4!\times k$ in numerator k integer $\geqslant 1$
	$\frac{\text { their } 10!}{\text { their } 4!} \times{ }^{11} \mathrm{C}_{2}$ or ${ }^{11} \mathrm{P}_{2}$	M1	OE
	8316000	A1	Exact value
		4	

Question	Answer	Marks	Guidance
6(iii)	S E E E: 1	M1	${ }^{6} \mathrm{C}_{x}$ seen alone or times $K>1$
	$\begin{array}{ll} \text { SEE E }: & { }^{6} \mathrm{C}_{1}=6 \\ \text { SE E }_{2}: & { }^{6} \mathrm{C}_{2}=15 \\ \text { S__- } \text { _ } & { }^{6} \mathrm{C}_{3}=20 \end{array}$	B1	${ }^{6} \mathrm{C}_{3}$ or ${ }^{6} \mathrm{C}_{2}$ or ${ }^{6} \mathrm{C}_{1}$ alone
	Add 3 or 4 correct scenarios	M1	No extras
	Total $=42$	A1	
		4	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	$\mathrm{P}(46<X<53)=\mathrm{P}\left(\frac{46-49.2}{2.8}<Z<\frac{53-49.2}{2.8}\right)$	M1	Using \pm standardisation formula for either 46 or 53, no continuity correction, σ^{2} or $\sqrt{ } \sigma$
	$\mathrm{P}(-1.143<Z<1.357)$	A1	Both standardisations correct unsimplified
	$\Phi(1.357)+\Phi(1.143)-1$ $=0.9126+0.8735-1$	$\mathbf{M 1}$	Correct final area
	0.786	$\mathbf{A 1}$	Final answer

Question	Answer	Marks	Guidance
7(ii)	$\frac{t-49.2}{2.8}=-1.406$	B1	± 1.406 seen
		M1	An equation using \pm standardisation formula with a z-value, condone σ^{2} or $\sqrt{ } \sigma$
	45.3	A1	
		3	
7(iii)	$\mathrm{P}(X<46)=0.1265$	M1	Calculated or ft from (i)
	$\mathrm{P}(2 \mathrm{~PB}<46)=3(1-0.1265) 0.1265^{2}$	M1	$3(1-p) p^{2}, 0<p<1$
	0.0419	A1	
		3	

