Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$\frac{0.3 \times 4^2}{2} = \frac{9e^2}{2 \times 0.6}$	M1	Set up an energy equation. Note the final velocity is zero.
	$e = 0.566 \text{ or } \frac{2\sqrt{2}}{5}$	A1	
	Distance = 1.17 m	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	$V\cos 30 = 40$	M1	Note V is the velocity of projection
	$V = 46.2 \text{ m s}^{-1}$	A1	Allow $\frac{80}{\sqrt{3}}$ or $\frac{80\sqrt{3}}{3}$
	$y = 23.1t - 5t^2$	B1FT	Use $s = ut + \frac{at^2}{2}$ vertically. FT candidates half V but not $V = 40$
			used
		3	
2(ii)	$y = \frac{23.1x}{40} - \frac{5x^2}{1600}$	M1	Attempt to eliminate t by substituting $t = \frac{x}{40}$ into answer to part
			(i)
	$y = 0.577x - \frac{x^2}{320}$ or $y = 0.577x - 0.003125x^2$	A1	
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	$0.5 \times 4 = 0.5g - T$	M1	Use Newton's Second Law vertically
	$T = \frac{12e}{0.6}$	M1	Use $T = \frac{\lambda x}{l}$
	$e\left(=\frac{3\times0.6}{12}\right)=0.15$	A1	
	EPE = $\frac{12 \times 0.15^2}{2 \times 0.6}$ and distance fallen = $0.6 - 0.5 + 0.15$	B1ft	
	$\frac{0.5v^2}{2} = \frac{0.5 \times 2^2}{2} + 0.5g(0.6 - 0.5 + 0.15) - \frac{12 \times 0.15^2}{2 \times 0.6}$	M1	Set up a 4 term energy equation
	$v = 2.85 \text{ m s}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
4(i)	Velocity component vertically = $\pm (V \sin 60 - 3g)$	B1	Use $v = u + at$
	$\tan 30 = \frac{30 - V\sin 60}{V\cos 60}$	M1	Use trigonometry of a right angled triangle
	$V = 15\sqrt{3} = 26(.0) \mathrm{m s^{-1}}$	A1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(ii)	$y = 26\sin 60 \times 3 - \frac{g \times 3^2}{2}$	B1FT	Use $s = ut + \frac{at^2}{2}$ vertically. Their V from part (i)
	$D^{2} = (26\sin 60 \times 3 - g \times 3^{2})^{2} + (26\cos 60 \times 3)^{2}$	M1	Use Pythagoras's Theorem
	D = 45(.0) m	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$r = 0.5 \sin 30 (= 0.25 \text{ m})$	B1	
	$T\cos 30 - T\cos 70 = 0.4g$	M1	Resolve vertically
	<i>T</i> =7.6335	A1	
	$7.6335\sin 30 + 7.6335\sin 70 = 0.4 v^2 / 0.25$	M1	Use Newton's Second Law with $a = \frac{v^2}{r}$
	$v = 2.62 \text{ m s}^{-1}$	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	$A\cos 30 - B\cos 70 = 0.4g$ and $A\sin 30 + B\sin 70 = 0.4 \times 12^2 \times 0.5\sin 30$	M1	Resolves vertically and uses Newton's Second Law with $a = r \omega^2$
		A1	Both correct
		M1	Attempt to solve for A or B
	A = 8.82 N	A1	
	B = 10.6 N	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$0.2v\frac{\mathrm{d}v}{\mathrm{d}x} = 0.09\sqrt{x} - 0.3$	M1	Use Newton's Second Law horizontally
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = 0.45\sqrt{x} - 1.5$	A1	AG
		2	
6(ii)	$0 = 0.45 x^{\frac{1}{2}} - 1.5$	M1	Equate acceleration to zero
	$x = \frac{100}{9}$	A1	
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
6(iii)	$\int v \mathrm{d}v = \int (0.45x^{\frac{1}{2}} - 1.5) \mathrm{d}x$	M1	Attempt to integrate
	$\frac{v^2}{2} = \frac{0.45^{\frac{3}{2}}}{\frac{3}{2}} - 1.5x(+c) = 0.3x^{\frac{3}{2}} - 1.5x(+c)$	A1	
	$0.3\left(\frac{100}{9}\right)^{\frac{3}{2}} - 1.5\left(\frac{100}{9}\right) + c = 0$	M1	
	$c = \frac{50}{9}$	A1	
	$x=0, \frac{v^2}{2} > \frac{50}{9}$ so $v > \frac{10}{3}$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	Rectangle: Area = $1.2 \times 1.8 = 2.16$, $y = \frac{1.8}{2} = 0.9$	B1	
	Triangle(s): Area = $1.2 \times \frac{1.8}{2} = 1.08$, $y = \frac{1.8}{3} = 0.6$	B1	
	$(2.16 + 1.08)Y = 2.16 \times 0.9 + 1.08 \times 0.6$	M1	Take moments about AD
	Y = 0.8 m	A1	AG
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(ii)	$AG\sin 30 = 0.8$	M1	Use Trigonometry of a right angled triangle
	AG = 1.6 m	A1	
		2	
7(iii)	AD makes an angle of 40° or 20° with the vertical	B1	
	$W \times AG\sin 10 = 7 \times 2.4\cos 40$	M1	Take moments about A
	W = 46.3 N	A1	
	$W \times AG\sin 10 = 7 \times 2.4\cos 20$	M1	Take moments about A
	W = 56.8 N	A1	
		5	