Question	Answer	Marks	Guidance
1	$\frac{0.3 \times 4^{2}}{2}=\frac{9 e^{2}}{2 \times 0.6}$	M1	Set up an energy equation. Note the final velocity is zero.
	$e=0.566$ or $\frac{2 \sqrt{2}}{5}$	A1	
	Distance $=1.17 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$V \cos 30=40$	M1	Note V is the velocity of projection
	$V=46.2 \mathrm{~ms}^{-1}$	A1	Allow $\frac{80}{\sqrt{3}}$ or $\frac{80 \sqrt{3}}{3}$
	$y=23.1 t-5 t^{2}$	B1FT	Use $s=u t+\frac{a t^{2}}{2}$ vertically. FT candidates half V but not $V=40$ used
		3	
2(ii)	$y=\frac{23.1 x}{40}-\frac{5 x^{2}}{1600}$	M1	Attempt to eliminate t by substituting $t=\frac{x}{40}$ into answer to part (i)
	$y=0.577 x-\frac{x^{2}}{320} \text { or } y=0.577 x-0.003125 x^{2}$	A1	
		2	

Question	Answer	Marks	Guidance
3	$0.5 \times 4=0.5 g-T$	M1	Use Newton's Second Law vertically
	$T=\frac{12 e}{0.6}$	M1	Use $T=\frac{\lambda x}{l}$
	$e\left(=\frac{3 \times 0.6}{12}\right)=0.15$	A1	
	$\mathrm{EPE}=\frac{12 \times 0.15^{2}}{2 \times 0.6}$ and distance fallen $=0.6-0.5+0.15$	B1ft	
	$\frac{0.5 v^{2}}{2}=\frac{0.5 \times 2^{2}}{2}+0.5 g(0.6-0.5+0.15)-\frac{12 \times 0.15^{2}}{2 \times 0.6}$	M1	Set up a 4 term energy equation
	$v=2.85 \mathrm{~ms}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	Velocity component vertically $= \pm(V \sin 60-3 g)$	B1	Use $v=u+a t$
	$\tan 30=\frac{30-V \sin 60}{V \cos 60}$	M1	Use trigonometry of a right angled triangle
	$V=15 \sqrt{3}=26(.0) \mathrm{m} \mathrm{s}^{-1}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$y=26 \sin 60 \times 3-\frac{g \times 3^{2}}{2}$	B1FT	Use $s=u t+\frac{a t^{2}}{2}$ vertically. Their V from part (i)
	$D^{2}=\left(26 \sin 60 \times 3-g \times 3^{2}\right)^{2}+(26 \cos 60 \times 3)^{2}$	M1	Use Pythagoras's Theorem
	$D=45(.0) \mathrm{m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$r=0.5 \sin 30(=0.25 \mathrm{~m})$	$\mathbf{B 1}$	
	$T \cos 30-T \cos 70=0.4 g$	$\mathbf{M 1}$	Resolve vertically
	$T=7.6335 .$.	$\mathbf{A 1}$	
	$7.6335 \sin 30+7.6335 \sin 70=0.4 v^{2} / 0.25$	$\mathbf{M 1}$	Use Newton's Second Law with $a=\frac{v^{2}}{r}$
	$v=2.62 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & A \cos 30-B \cos 70=0.4 g \text { and } A \sin 30+B \sin 70=0.4 \times 12^{2} \\ & \times 0.5 \sin 30 \end{aligned}$	M1	Resolves vertically and uses Newton's Second Law with $a=r \omega^{2}$
		A1	Both correct
		M1	Attempt to solve for A or B
	$A=8.82 \mathrm{~N}$	A1	
	$B=10.6 \mathrm{~N}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$0.2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=0.09 \sqrt{x}-0.3$	$\mathbf{M 1}$	Use Newton's Second Law horizontally
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=0.45 \sqrt{x}-1.5$	$\mathbf{A 1}$	AG
		\mathbf{M}	$\mathbf{2}$
	$0=0.45 x^{\frac{1}{2}}-1.5$	Equate acceleration to zero	
	$x=\frac{100}{9}$	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
6(iii)	$\int v \mathrm{~d} v=\int\left(0.45 x^{\frac{1}{2}}-1.5\right) \mathrm{d} x$	M1	Attempt to integrate
	$\frac{v^{2}}{2}=\frac{0.45^{\frac{3}{2}}}{\frac{3}{2}}-1.5 x(+c)=0.3 x^{\frac{3}{2}}-1.5 x(+c)$	A1	
	$0.3\left(\frac{100}{9}\right)^{\frac{3}{2}}-1.5\left(\frac{100}{9}\right)+c=0$	M1	
	$c=\frac{50}{9}$	A1	
	$x=0, \frac{v^{2}}{2}>\frac{50}{9}$ so $v>\frac{10}{3}$	A1	
		5	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	Rectangle: Area $=1.2 \times 1.8=2.16, y=\frac{1.8}{2}=0.9$	B1	
	Triangle(s): Area $=1.2 \times \frac{1.8}{2}=1.08, y=\frac{1.8}{3}=0.6$	B1	
	$(2.16+1.08) Y=2.16 \times 0.9+1.08 \times 0.6$	$\mathbf{M 1}$	Take moments about $A D$
	$Y=0.8 \mathrm{~m}$	$\mathbf{A 1}$	AG
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(ii)	$A G \sin 30=0.8$	M1	Use Trigonometry of a right angled triangle
	$A G=1.6 \mathrm{~m}$	A1	
		2	
7(iii)	$A D$ makes an angle of 40° or 20° with the vertical	B1	
	$W \times A G \sin 10=7 \times 2.4 \cos 40$	M1	Take moments about A
	$W=46.3 \mathrm{~N}$	A1	
	$W \times A G \sin 10=7 \times 2.4 \cos 20$	M1	Take moments about A
	$W=56.8 \mathrm{~N}$	A1	
		5	

