Question	Answer	Marks	Guidance
1	Conservation of momentum at $\frac{h}{4}$	B1	
	$\frac{5 \times h}{4}=3 \times 0.2$	M1	Take moments about A
	$(h=) 0.48 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$-15 \sin \theta=15 \sin \theta-2 g$	M1	Use $v=u+a t$ vertically
	$(\theta=) 41.8$	A1	
		2	
2(ii)	Vertically: $\frac{v}{15 \cos \theta}= \pm \tan 20$	M1	$v=$ vertical velocity
	$v=(\pm) 4.07$	A1	
	$-4.07=15 \sin 41.8-\mathrm{g} t$	M1	Use $v=u+a t$ vertically
	$(t=) 1.41 \mathrm{~s}$	A1	
		4	

Question	Answer	Marks	Guidance
3(i)	$0.25 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-k v^{2} x^{-2} \rightarrow v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-4 k v^{2} x^{-2}$	B1	AG
		1	
3(ii)	$\int \frac{\mathrm{d} v}{v}=-4 k \int x^{-2} \mathrm{~d} x$	M1	Attempt to integrate
	$\ln v=\frac{4 k}{x}(+c)$	A1	
	$x=0.8, v=3$ hence $c=\ln 3-5 k$	A1	Finds c
	$\ln v=\frac{4 k}{x}+\ln 3-5 k$	M1	
	$v=3^{\left(\frac{4 k}{x}-5 k\right)}$	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	$x=30 \cos 60 t$	B1	Use horizontal motion
	$y=30 \sin 60 t-\frac{g t^{2}}{2}$	B1	Use $\mathrm{s}=\mathrm{ut}+\frac{g t^{2}}{2}$ vertically
	$y=\frac{30 \sin 60 x}{30 \cos 60}-\frac{5 x^{2}}{(30 \cos 60)^{2}}$	M1	Attempt to eliminate t
	$y=1.73 x-0.0222 x^{2} \text { or } y=\sqrt{3} x-\frac{x^{2}}{45}$	A1	
		4	
4(ii)	$x=y \text { or } \tan 45=\frac{y}{x}$	M1	
	$1=1.73-0.0222 x \text { or } 1=\sqrt{3}-\frac{x}{45}$	M1	x common to all three terms
	$x=32.9$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{T}=\frac{9 \times(0.8-0.6)}{0.6}$	M1	Use $\mathrm{T}=\frac{\lambda x}{l}$. Note $O P=\frac{0.4}{\sin 30}$
	$\mathrm{T}=3 \mathrm{~N}$	A1	
	$0.3 \mathrm{a}=3-0.3 g \sin 30$	M1	Use Newton's Second Law along the slope
	$\mathrm{a}=5 \mathrm{~ms}^{-1}$	A1	
		4	
5(ii)	$0.3 g \sin 30=\frac{9 \mathrm{e}}{0.6}$	M1	Note the maximum speed is at the equilibrium position
	$\mathrm{e}=0.1$	A1	
	$\mathrm{EPE}=\frac{9 \times(0.8-0.6)^{2}}{2 \times 0.6} \quad \text { or } \quad \frac{9 \times 0.1^{2}}{2 \times 0.6}$	B1	
	$\frac{0.3 v^{2}}{2}=\frac{9 \times(0.8-0.6)^{2}}{2 \times 0.6}-\frac{9 \times 0.1^{2}}{2 \times 0.6}-0.3 g \times 0.1 \sin 30$	M1	Set up a 4 term energy equation
	$v=0.707 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		5	

Question	Answer	Marks	Guidance
6 (i)	$0.3^{2}+r^{2}=0.5^{2}$ hence $r=0.4$	B1	Use Pythagoras's theorem
	$8 \times 0.4=3.2 \mathrm{~m} \mathrm{~s}^{-1}$	B1	Use $\mathrm{v}=\mathrm{r} \omega$
		2	
6(ii)	$A \times \frac{3}{5}-B \times \frac{3}{5}=0.3 g$	B1	Resolve vertically
	$A \times \frac{4}{5}+B \times \frac{4}{5}=0.3 \times 8^{2} \times 0.4 \text { or } \frac{0.3 \times 3.2^{2}}{0.4}$	M1A1	Use Newton's Second Law horizontally
		M1	Attempt to solve for B
	$B=2.3 \mathrm{~N}$	A1	
	$2.3=\frac{46(0.5-L)}{L}$	M1	Use $\mathrm{T}=\frac{\lambda x}{l}$ and attempt to solve
	$L=0.476 \mathrm{~m} \text { or } \frac{10}{21}$	A1	
		7	

Question	Answer	Marks	Guidance
7(i)	$B G=0.3 \mathrm{~m}$	B1	G is the $C o M$ vertically above B. M is the mid-point of $A B$ and E is v the point vertically below C on AB extended.
	$M E=3 \times 0.2=0.6$ and $\tan A=\frac{C E}{A E}=\frac{0.9}{0.8}$	M1	Use of similar triangles and trigonometry of a right angled triangle
	$A=48.4^{\circ}$	A1	AG
		3	
7(ii)	$A C=\frac{0.9}{\sin 48.4}=1.20(41 \ldots)$	B1	Use trigonometry of a right angled triangle
	$18 \times 1.2041=0.4 W$	M1	Moments about A
	$W=54.2 \mathrm{~N}$	A1	
		3	
7(iii)	$H=18 \sin A=18 \sin 48.4(=13.46)$	B1	Resolve horizontally
	$V=54.2-18 \cos 48.4(=42.25)$	B1ft	Resolve vertically
	$\mu=\frac{13.46}{42.25}$	M1	Use $F=\mu R$
	$\mu=0.319$	A1	Accept 0.32
		4	

