Question	Answer	Marks	Guidance
1	$F=\mu \times 500 g$	B1	Use of $F=\mu R$
	[2500 $=\mu \times 500 \mathrm{~g}$]	M1	Resolving horizontally
	$\mu=0.5$	A1	
		3	

Question	Answer		Marks	Guidance
2	PE gain $=150000 g \times 500 \sin \alpha$	$(=75000000 g \sin \alpha)$	B1	Correct expression for PE gain
	$\frac{1}{2} \times 150000 \times 45^{2}-\frac{1}{2} \times 150000 \times 42^{2}$	(=19575000)	B1	Correct expression for KE loss
			M1	For 5 term work energy equation (or 4 terms if using loss in KE as 1 term)
	$150000 g \times 500 \sin \alpha=19575000+16000 \times 500-4 \times 10^{6}$		A1	
	$\alpha=1.8$		A1	
			5	

Question	Answer	Marks	Guidance
3	Resolving horizontally or vertically	M1	
	$50 \cos 20+60-100 \sin 30 \quad(=56.984 \ldots)$	A1	
	$100 \cos 30-50 \sin 20 \quad(=69.501 \ldots)$	A1	
	$R=\sqrt{\left(56.984 \ldots{ }^{2}+69.501 \ldots{ }^{2}\right)}$ or $\alpha=\tan ^{-1}\left(\frac{56.984 \ldots}{69.501 \ldots}\right)$	M1	Method to find either R or α
	$R=89.9$ (89.876...)	A1	
	$\alpha=39.3$ (39.348...)	A1	
		6	

Question	Answer	Marks	Guidance
4(i)	$s_{P Q}=20 \times 10-0.5 a \times 10^{2}$ or $s_{Q R}=20 \times 10+0.5 a \times 10^{2}$	M1	For use of $s=v t-\frac{1}{2} a t^{2} \quad$ or $s=u t+\frac{1}{2} a t^{2} \quad \mathrm{OE}$ suvat to find $P Q$ or $Q R$
	$s=200-50 a$ and $1.5 s=200+50 a$	A1	OE
	$1.5(200-50 a)=200+50 a \rightarrow 100=125 a \rightarrow a=0.8 \mathrm{~ms}^{-2}$	B1	AG
		3	
4(ii)	Distance $Q S=20 \times 20+\frac{1}{2} \times 0.8 \times 20^{2}$	M1	Using $s=u t+\frac{1}{2} a t^{2}$
	Distance $=560 \mathrm{~m}$	A1	
	Average speed between Q and $S=\frac{560}{20}=28 \mathrm{~ms}^{-1}$	B1	
		3	

Question	Answer	Marks	Guidance
5(i)	Driving force $=\frac{240}{6}(=40 \mathrm{~N})$	B1	Use of power $=$ force \times velocity
	[40-R $=80 \times 0.3$]	M1	Use of Newton's Second Law (3 terms)
	Resistance is 16 N	A1	AG
		3	
5(ii)	$\left[\frac{240}{v}=16\right]$	M1	Use of $P=F v$ with $\mathrm{DF}=$ resistance
	Steady speed is $15 \mathrm{~ms}^{-1}$	A1	
		2	
5(iii)	Use of Newton's Second Law	M1	(4 terms)
	$\frac{240}{4}-16-80 g \sin 3=80 a$	A1	
	Acceleration is $0.0266 \mathrm{~ms}^{-2}$	A1	
		3	

Question	Answer	Marks	Guidance
Q6(i)	$10=0.04 \times 5^{3}+5^{2} c+5 k \quad(5 c+k=1)$	B1	Use of $t=5, v=10$
	$s=\frac{0.04}{4} t^{4}+\frac{c t^{3}}{3}+\frac{k t^{2}}{2}+(C)$	*M1	For use of $s=\int v \mathrm{~d} t$
	$25=0.01 \times 5^{4}+\frac{5^{3}}{3} c+\frac{5^{2}}{2} k$	DM1	Use of $t=0, \mathrm{~s}=0$ and $t=5, s=25$
	$6.25+\frac{125}{3} c+\frac{25}{2} k=25 \quad\left(\frac{125}{3} c+\frac{25}{2} k=18.75\right)$	A1	
	Solving for c or for k	M1	
	$c=-0.3$ and $k=2.5$	A1	
		6	
Q6(ii)	$a=0.12 t^{2}-0.6 t+2.5$	M1	For use of $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
	$a^{\prime}=0.24 t-0.6=0 \rightarrow t=\ldots$ or $a=0.12\left(t^{2}-5 t+\ldots\right)=0.12\left[(t-2.5)^{2}+\ldots\right]$	M1	Uses $\frac{\mathrm{d} a}{\mathrm{~d} t}=0$ or completes the square for a
	Minimum when $t=2.5$	A1	AG
		3	

Question	Answer	Marks	Guidance
7(i)	$\left[0.81=0+\frac{1}{2} \times a \times 0.9^{2}\right]$	M1	For use of $s=u t+\frac{1}{2} a t^{2}$
	$a=2$	A1	
	$T-m g=m a$ or $k m g-T=k m a$	M1	Use of Newton's Second Law for A or B or use of $a=\frac{\left(m_{B}-m_{A}\right) g}{\left(m_{B}+m_{A}\right)}$
	$T-m g=m a$ and $k m g-T=k m a$ or $\left[a=\frac{(k m-m) g}{(k m+m)}\right]$	A1	
	$a=\frac{(k g-g)}{(k+1)}=2 \rightarrow k=\ldots$	M1	Solves to find k
	$k=1.5$	A1	
	$T=10 m+2 m=12 m \mathrm{~N}$	B1	AG
		7	
7(ii)	Velocity of A when string breaks $=2 \times 0.9 \quad\left(=1.8 \mathrm{~ms}^{-1}\right.$ upwards)	B1FT	For use of $v=u+a t \mathrm{ft} a$ from (i)
	$v^{2}=1.8^{2}+2 \mathrm{~g} \times 1.62 \rightarrow v=\ldots$	M1	For use of suvat to find v_{A} at ground
	Speed is $5.97 \mathrm{~ms}^{-1}$	A1	AG
	Time taken $=\frac{(1.8+5.97)}{g}=0.777 s$	B1	
		4	

Question	Answer	Marks	Guidance
7 (iii)	Straight line from $(0,0)$ to $(0.9,1.8)$	B1	
	Straight line from $(0.9,1.8)$ to approx. $(1.7,-6)$	B1FT	FT $0.9+t$ from (ii) for 1.7
		$\mathbf{2}$	

