Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	<i>F</i> = <i>µ</i> ×500 <i>g</i>	B1	Use of $F=\mu R$
	$[2500=\mu \times 500g]$	M1	Resolving horizontally
	μ=0.5	A1	
		3	

Question	Answer		Marks	Guidance
2	PE gain =150000 $g \times 500 \sin \alpha$	(=7500000gsinα)	B1	Correct expression for PE gain
	$\frac{1}{2} \times 150000 \times 45^2 - \frac{1}{2} \times 150000 \times 42^2$	(=19575000)	B1	Correct expression for KE loss
			M1	For 5 term work energy equation (or 4 terms if using loss in KE as 1 term)
	$150000g \times 500\sin\alpha = 19575000 + 16000 \times 500 - 4 \times 10^{6}$		A1	
	α=1.8		A1	
			5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer		Marks	Guidance
3	Resolving horizontally or vertically		M1	
	$50\cos 20 + 60 - 100\sin 30$	(=56.984)	A1	
	100cos30 - 50sin20	(= 69.501)	A1	
	$R = \sqrt{(56.984^{2} + 69.501^{2})} \text{ or } \alpha = \tan^{-1} \left(\frac{56.984}{69.501}\right)$		M1	Method to find either <i>R</i> or α
	<i>R</i> =89.9 (89.876)		A1	
	<i>α</i> =39.3 (39.348)		A1	
			6	

9709/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
4(i)	$s_{PQ} = 20 \times 10 - 0.5a \times 10^2$ or $s_{QR} = 20 \times 10 + 0.5a \times 10^2$	M1	For use of $s = vt - \frac{1}{2}at^2$ or $s = ut + \frac{1}{2}at^2$ OE suvat to find PQ or QR
	s = 200-50a and $1.5s = 200 + 50a$	A1	OE
	$1.5(200 - 50a) = 200 + 50a \rightarrow 100 = 125a \rightarrow a = 0.8 \text{ ms}^{-2}$	B1	AG
		3	
4(ii)	Distance $QS = 20 \times 20 + \frac{1}{2} \times 0.8 \times 20^2$	M1	Using $s = ut + \frac{1}{2}at^2$
	Distance=560 m	A1	
	Average speed between Q and $S = \frac{560}{20} = 28 \mathrm{ms}^{-1}$	B1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
5(i)	Driving force = $\frac{240}{6}$ (= 40 N)	B1	Use of power = force \times velocity
	$[40 - R = 80 \times 0.3]$	M1	Use of Newton's Second Law (3 terms)
	Resistance is 16 N	A1	AG
		3	
5(ii)	$\left[\frac{240}{v}=16\right]$	M1	Use of <i>P=Fv</i> with DF=resistance
	Steady speed is 15 ms ⁻¹	A1	
		2	
5(iii)	Use of Newton's Second Law	M1	(4 terms)
	$\frac{240}{4} - 16 - 80g\sin 3 = 80a$	A1	
	Acceleration is 0.0266 ms ⁻²	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9<u>709_w19_ms_</u>43

Question	Answer	Marks	Guidance
Q6(i)	$10 = 0.04 \times 5^3 + 5^2 c + 5k \qquad (5c + k = 1)$	B1	Use of <i>t</i> =5, <i>v</i> =10
	$s = \frac{0.04}{4}t^4 + \frac{ct^3}{3} + \frac{kt^2}{2} + (C)$	*M1	For use of $s = \int v dt$
	$25 = 0.01 \times 5^4 + \frac{5^3}{3}c + \frac{5^2}{2}k$	DM1	Use of $t = 0$, $s = 0$ and $t = 5$, $s = 25$
	$6.25 + \frac{125}{3}c + \frac{25}{2}k = 25 \qquad \left(\frac{125}{3}c + \frac{25}{2}k = 18.75\right)$	A1	
	Solving for <i>c</i> or for <i>k</i>	M1	
	c = -0.3 and $k = 2.5$	A1	
		6	
Q6(ii)	$a = 0.12t^2 - 0.6t + 2.5$	M1	For use of $a = \frac{dv}{dt}$
	$a' = 0.24t - 0.6 = 0 \rightarrow t = \dots$ or $a = 0.12(t^2 - 5t + \dots) = 0.12[(t - 2.5)^2 + \dots]$	M1	Uses $\frac{da}{dt} = 0$ or completes the square for <i>a</i>
	Minimum when $t = 2.5$	A1	AG
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709 w19 ms 43

Question	Answer	Marks	Guidance
7(i)	$\left[0.81 = 0 + \frac{1}{2} \times a \times 0.9^2\right]$	M1	For use of $s = ut + \frac{1}{2}at^2$
	<i>a</i> = 2	A1	
	T - mg = ma or kmg - T = kma	M1	Use of Newton's Second Law for A or B or use of $a = \frac{(m_B - m_A)g}{(m_B + m_A)}$
	$T - mg = ma$ and $kmg - T = kma$ or $\left[a = \frac{(km - m)g}{(km + m)}\right]$	A1	
	$a = \frac{(kg - g)}{(k+1)} = 2 \longrightarrow k = \dots$	M1	Solves to find <i>k</i>
	<i>k</i> = 1.5	A1	
	T = 10m + 2m = 12m N	B1	AG
		7	
7(ii)	Velocity of A when string breaks = 2×0.9 (=1.8 ms ⁻¹ upwa	rds) B1FT	For use of $v=u+at$ ft <i>a</i> from (i)
	$v^2 = 1.8^2 + 2g \times 1.62 \rightarrow v =$	M1	For use of <i>suvat</i> to find v_A at ground
	Speed is 5.97 ms ⁻¹	A1	AG
	Time taken $=\frac{(1.8+5.97)}{g} = 0.777s$ (0.7769)	B1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(iii)	Straight line from $(0, 0)$ to $(0.9, 1.8)$	B1	
	Straight line from $(0.9, 1.8)$ to approx. $(1.7, -6)$	B1FT	FT 0.9 + <i>t</i> from (ii) for 1.7
		2	