Question	Answer	Mark	Guidance
1	$(v=) 3 t^{2}-12 t+4$	*M1	Attempt at differentiation of s to find v
	$(a=) 6 t-12$	*M1	Attempt at differentiation of v to find a
	[When $a=0, t=2$]	DM1	Solve to find t when $a=0$ and find v at this time
	$v=-8 \mathrm{~ms}^{-1}$	A1	
	Alternative method for question 1		
	$(v=) 3 t^{2}-12 t+4$	M1	Attempt at differentiation of s to find v
	$\begin{aligned} & (v=) 3(t-2)^{2}-8 \\ & \text { or } t=\frac{-b}{2 a}=\frac{12}{6}=2 \end{aligned}$	M1	For using the method of completing the square or using the value of ${ }^{\text {' }} \frac{-b}{2 a}$ to find the t value of the minimum velocity
		M1	Use of the t value at minimum velocity to find v
	$v=-8 \mathrm{~ms}^{-1}$	A1	
		4	

Question	Answer	Mark	Guidance
2(i)	$\frac{(12-V)}{(35-30)}=0.8 \text { or } 12=V+0.8 \times 5$	M1	Use gradient of graph or constant acceleration formulae to set up an equation in V
	$V=8$	A1	
		2	
2(ii)	$\left[25 \times 8+5 \times 10+15 \times 6+\frac{1}{2} \times(U+8) \times 5=375\right]$	M1	Attempt to find total distance travelled by the tractor in 50s to set up an equation for U using EITHER areas OR suvat equations OR a combination of areas and suvat In either case total distance must be attempted
		A1FT	Correct equation FT on their V from (i)
	$U=6$	A1	
		3	

Question	Answer	Mark	Guidance
3	$T_{A} \times \frac{4}{5}+T_{B} \times \frac{3}{5}+0.3 g=5$	M1	Resolving vertically
	$T_{A} \times \frac{3}{5}=T_{B} \times \frac{4}{5}$	M1	Resolving horizontally
		A1	Both correct
		M1	Solve for T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
	Alternative method for question 3		
	$\left[\frac{5-3}{\sin 90}=\frac{T_{A}}{\sin 126.9}=\frac{T_{B}}{\sin 143.1}\right]$	M1	Attempt one pair of Lami's equations
		M1	Attempt a second pair of Lami equations
		A1	Equations all correct
		M1	Evaluate T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	

Question	Answer	Mark	Guidance
3	Alternative method for question 3		
	$T_{A}=5 \cos 36.9-3 \cos 36.9=5 \times \frac{4}{5}-3 \times \frac{4}{5}$	M1	Resolve along $P A$
	$T B=5 \cos 53.1-3 \cos 53.1=5 \times \frac{3}{5}-3 \times \frac{3}{5}$	M1	Resolve along $P B$
		A1	Both correct
		M1	Evaluate T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
	Alternative method for question 3		
	Forces $2 \mathrm{~N}, T_{A}$ and T_{B} with angles 36.9 and 53.1	M1	Attempt to illustrate a triangle of forces
	$\left[T_{A}=2 \cos 36.9, T_{B}=2 \cos 53.1\right]$	M1	Use trigonometry in the triangle to find T_{A} and T_{B}
		A1	Both correct
		M1	Solve for T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
		5	

Question	Answer	Mark	Guidance
4(i)	$P=3000 \times 30$	M1	Use of $P=F v$ with $F=$ resistance
	$P=90000 \mathrm{~W}=90 \mathrm{~kW}$	A1	
		2	
4(ii)	PE gained $=25000 \mathrm{gh}$	B1	Correct expression for PE Allow PE=25000 gd sin 2
	$\begin{aligned} & \text { Initial } \mathrm{KE}=\frac{1}{2} \times 25000 \times 30^{2}[=11250000] \\ & \text { Final } \mathrm{KE}=\frac{1}{2} \times 25000 \times 25^{2}[=7812500] \end{aligned}$	B1	For either correct [KE loss $=3437$ 500]
	$\begin{aligned} & \text { Initial } \mathrm{KE}=\text { Final } \mathrm{KE}+25000 g h+\frac{3000 h}{\sin 2} \\ & \mathrm{OR} \\ & \text { Initial } \mathrm{KE}=\text { Final } \mathrm{KE}+25000 g d \sin 2+3000 d \end{aligned}$	M1	For a 4 term work-energy equation, correct dimensions
		A1	Correct work-energy equation involving h or d
	$h=10.2 \mathrm{~m}(10.2318 \ldots)$	A1	
		5	

Question	Answer	Mark	Guidance
5(i)	$h_{A}=20 t-\frac{1}{2} \times 10 t^{2}$ or $h_{B}= \pm \frac{1}{2} \times 10(t-1)^{2}$	B1	OE $h_{A}=20(T+1)-\frac{1}{2} \times 10(T+1)^{2} \text { or } h_{B}= \pm \frac{1}{2} \times 10 T^{2}$
	[Meet when $\left.20 t-\frac{1}{2} \times 10 t^{2}+\frac{1}{2} \times 10(t-1)^{2}=40\right]$	*M1	Set up an equation using their h_{A}, their h_{B} and 40
	$10 t-35=0$	DM1	Solve for t and attempt to find the height at collision.
	$t=3.5$ so height at collision $=8.75 \mathrm{~m}$	A1	$T=2.5$ and height at collision $=8.75 \mathrm{~m}$
	Alternative method for question 5(i)		
	$h_{A}=20 \times 1-\frac{1}{2} \times 10 \times 1^{2}=15, v=20-10 \times 1=10$	B1	Finding distance travelled by A and its speed after 1 second
	$\begin{aligned} & H_{A}+H_{B}=25 \\ & \left(10 T-\frac{1}{2} \times 10 \times T^{2}\right)+\frac{1}{2} \times 10 \times T^{2}=25 \end{aligned}$	*M1	T is the time beyond 1s until the particles reach same level H_{A} and H_{B} are distances travelled by A and B in T seconds.
	[10T = $25 \rightarrow T=2.5]$	DM1	Solve for T and attempt to find the height at collision
	$t=3.5$ so height $=8.75 \mathrm{~m}$	A1	
		4	

Question	Answer	Mark	Guidance
$5(\mathrm{ii})$	$v_{A}=20-g t=-15$ or $v_{A}{ }^{2}=20^{2}+2(-g)(8.75)$	$\mathbf{M 1}$	Use of their t or their $h \leqslant 20$ from $\mathbf{5 (i)}$ in a constant acceleration formula which would lead to finding v_{A}
	$v_{B}=-g(t-1)=-25$ or $v_{B}{ }^{2}=2(g)(40-8.75)$	$\mathbf{M 1}$	Use of their $t \pm 1$ or their $40-h$ from $\mathbf{5 (i) ~ i n ~ a ~ c o n s t a n t ~}$ acceleration formula which would lead to finding v_{B}
	Difference $=10 \mathrm{~ms}^{-1}$	$\mathbf{A 1}$	CWO
		$\mathbf{3}$	

Question	Answer	Mark	Guidance
6(i)	$4.5=0+\frac{1}{2} \times a \times 5^{2}$	M1	For use of $s=u t+\frac{1}{2} a t^{2}$ to find a
	$a=0.36$	A1	
	$6 \times \frac{24}{25}-F=3 \times 0.36$	M1	Resolving horizontally. Allow use of $\theta=16.3$
	$F=4.68 \mathrm{~N}$	A1	
		4	
6(ii)	$R=3 g-6 \sin 16.3=3 g-6 \times \frac{7}{25} \quad[=28.32]$	B1	
	$4.68=\mu \times 28.32$	M1	Use of $F=\mu R$
	$\mu=0.165$ (0.165254...)	A1	AG. Allow $\mu=\frac{39}{236}$
		3	

Question	Answer	Mark	Guidance
6(iii)	$\begin{aligned} & v=5 \times 0.36[=1.8] \\ & \text { or } v=\sqrt{(2 \times 0.36 \times 4.5)}[=1.8] \end{aligned}$	B1FT	For velocity at $t=5 \mathrm{ft}$ on their a from 6(i)
	$3 a=-0.165 \times 3 g$	M1	Using Newton's second law with new frictional force
	$0=1.8-0.165 g t \quad(t=1.09)$	M1	Using constant acceleration equations which would lead to a positive value of t
	Total time $=5+1.09=6.09 \mathrm{~s}$	A1	
		4	

Question	Answer	Mark	Guidance
7(i)		M1	Use of Newton's second law for P or Q or the system
	$\begin{array}{ll} \text { For } P: & T-0.3 g \times \frac{3}{5}=T-0.3 g \sin 36.9=0.3 a \\ \text { For } Q: & 0.2 g-T=0.2 a \\ \text { System: } & 0.2 g-0.3 g \times \frac{3}{5}=(0.2+0.3) a \\ \text { or } & 0.2 g-0.3 g \sin 36.9=(0.2+0.3) a \end{array}$	A1	Two correct equations Allow use of $\theta=36.9$
	$[0.2 g-0.18 g=0.5 a]$	M1	For solving either the system for a or for solving a pair of simultaneous equations for a or T
	$a=0.4 \mathrm{~ms}^{-2}$	A1	
	$T=1.92 \mathrm{~N}$	A1	
		5	

Question	Answer	Mark	Guidance
7(ii)	$0.8=0+\frac{1}{2} \times 0.4 \times t^{2} \mathrm{a}$	M1	For use of the constant acceleration equations with their a from 7(i) and $a \neq \pm g$ for a complete method to find t
	$t=2 \mathrm{~s}$	A1	
		2	
7(iii)	Speed when Q hits the floor $=2 \times 0.4(=0.8)$ or $v=\sqrt{(2 \times 0.4 \times 0.8)}[=0.8]$	B1FT	Using $v=u+a t$ with $u=0$ Allow FT for their unsimplified $v=a t$ or $v^{2}=2 a s$ with a from (i), t from (ii) and $s=0.8$
	$-0.3 g \times \frac{3}{5}=-0.3 g \sin 36.9=0.3 a \quad[a=-6]$	M1	Using Newton's second law for P to find $a \neq \pm g$
	$\begin{aligned} & 0=0.8 t+\frac{1}{2} \times(-6) t^{2}(t=0.2666 \ldots) \\ & \text { or } \\ & 0=0.8-6 T \\ & \left(T=0.13333=\frac{2}{15} \text { and } t=2 T=0.26666=\frac{4}{15}\right) \end{aligned}$	M1	Use of the constant acceleration equation(s) to find the time taken for P to return to the position where the string first became slack.
	$\text { Total time }=2+0.266 \ldots=2+\frac{4}{15}=2.27=\frac{34}{15} \mathrm{~s}$	A1	
		4	

