Question	Answer	Mark	Guidance
1	$(v =) 3t^2 - 12t + 4$	*M1	Attempt at differentiation of <i>s</i> to find <i>v</i>
	(a =) 6t - 12	*M1	Attempt at differentiation of <i>v</i> to find <i>a</i>
	[When $a = 0, t = 2$]	DM1	Solve to find <i>t</i> when $a = 0$ and find <i>v</i> at this time
	$v = -8 \text{ ms}^{-1}$	A1	
	Alternative method for question 1		
	$(v =) 3t^2 - 12t + 4$	M1	Attempt at differentiation of s to find v
	$(v =) 3(t-2)^2 - 8$	M1	
	or $t = \frac{-b}{2a} = \frac{12}{6} = 2$		of $\frac{-b}{2a}$ to find the <i>t</i> value of the minimum velocity
		M1	Use of the t value at minimum velocity to find v
	$v = -8 \text{ ms}^{-1}$	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709 w19 ms 42

Question	Answer	Mark	Guidance
2(i)	$\frac{(12-V)}{(35-30)} = 0.8$ or $12 = V + 0.8 \times 5$	M1	Use gradient of graph or constant acceleration formulae to set up an equation in V
	<i>V</i> = 8	A1	
		2	
2(ii)	$\left[25 \times 8 + 5 \times 10 + 15 \times 6 + \frac{1}{2} \times (U + 8) \times 5 = 375\right]$	M1	Attempt to find total distance travelled by the tractor in 50s to set up an equation for U using EITHER areas OR suvat equations OR a combination of areas and suvat In either case total distance must be attempted
		A1FT	Correct equation FT on <i>their V</i> from (i)
	<i>U</i> = 6	A1	
		3	

Question	Answer	Mark	Guidance
3	$T_A \times \frac{4}{5} + T_B \times \frac{3}{5} + 0.3g = 5$	M1	Resolving vertically
	$T_A \times \frac{3}{5} = T_B \times \frac{4}{5}$	M1	Resolving horizontally
		A1	Both correct
		M1	Solve for T_A or T_B
	$T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$	A1	
	Alternative method for question 3		
	$\left[\frac{5-3}{\sin 90} = \frac{T_A}{\sin 126.9} = \frac{T_B}{\sin 143.1}\right]$	M1	Attempt one pair of Lami's equations
		M1	Attempt a second pair of Lami equations
		A1	Equations all correct
		M1	Evaluate T_A or T_B
	$T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$	A1	

Question	Answer	Mark	Guidance	
3	Alternative method for question 3	_		
	$T_A = 5\cos 36.9 - 3\cos 36.9 = 5 \times \frac{4}{5} - 3 \times \frac{4}{5}$	M1	Resolve along PA	
	$TB = 5\cos 53.1 - 3\cos 53.1 = 5 \times \frac{3}{5} - 3 \times \frac{3}{5}$	M1	Resolve along <i>PB</i>	
		A1	Both correct	
		M1	Evaluate T_A or T_B	
	$T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$	A1		
	Alternative method for question 3			
	Forces 2N, T_A and T_B with angles 36.9 and 53.1	M1	Attempt to illustrate a triangle of forces	
	$[T_A = 2\cos 36.9, T_B = 2\cos 53.1]$	M1	Use trigonometry in the triangle to find T_A and T_B	
		A1	Both correct	
		M1	Solve for T_A or T_B	
	$T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$	A1		
		5		

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Guidance
4(i)	$P = 3000 \times 30$	M1	Use of $P = Fv$ with $F =$ resistance
	P = 90000 W = 90 kW	A1	
		2	
4(ii)	PE gained = $25000gh$	B1	Correct expression for PE Allow PE = $25\ 000\ g\ d\sin 2$
	Initial KE = $\frac{1}{2} \times 25000 \times 30^2$ [= 11 250 000] Final KE = $\frac{1}{2} \times 25000 \times 25^2$ [= 7 812 500]	B1	For either correct [KE loss = 3 437 500]
	Initial KE = Final KE + $25000gh + \frac{3000h}{\sin 2}$ OR Initial KE = Final KE + $25000gd\sin 2 + 3000d$	M1	For a 4 term work-energy equation, correct dimensions
		A1	Correct work-energy equation involving <i>h</i> or <i>d</i>
	h = 10.2 m (10.2318)	A1	
		5	

October/November 2019

Question	Answer	Mark	Guidance
5(i)	$h_A = 20t - \frac{1}{2} \times 10t^2$ or $h_B = \pm \frac{1}{2} \times 10(t-1)^2$	B1	OE $h_A = 20(T+1) - \frac{1}{2} \times 10(T+1)^2 \text{ or } h_B = \pm \frac{1}{2} \times 10T^2$
	[Meet when $20t - \frac{1}{2} \times 10t^2 + \frac{1}{2} \times 10(t-1)^2 = 40$]	*M1	Set up an equation using <i>their</i> h_A , <i>their</i> h_B and 40
	10t - 35 = 0	DM1	Solve for <i>t</i> and attempt to find the height at collision.
	t = 3.5 so height at collision = 8.75 m	A1	T = 2.5 and height at collision = 8.75 m
	Alternative method for question 5(i)		
	$h_A = 20 \times 1 - \frac{1}{2} \times 10 \times 1^2 = 15, v = 20 - 10 \times 1 = 10$	B1	Finding distance travelled by A and its speed after 1 second
	$H_{A} + H_{B} = 25$ $\left(10T - \frac{1}{2} \times 10 \times T^{2}\right) + \frac{1}{2} \times 10 \times T^{2} = 25$	*M1	<i>T</i> is the time beyond 1s until the particles reach same level H_A and H_B are distances travelled by <i>A</i> and <i>B</i> in <i>T</i> seconds.
	$[10T = 25 \rightarrow T = 2.5]$	DM1	Solve for <i>T</i> and attempt to find the height at collision
	t = 3.5 so height = 8.75 m	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Mark	Guidance
5(ii)	$v_A = 20 - gt = -15$ or $v_A^2 = 20^2 + 2(-g)(8.75)$	M1	Use of <i>their t</i> or <i>their h</i> \leq 20 from 5(i) in a constant acceleration formula which would lead to finding v_A
	$v_B = -g(t-1) = -25$ or $v_B^2 = 2(g)(40 - 8.75)$	M1	Use of <i>their</i> $t \pm 1$ or <i>their</i> $40 - h$ from 5(i) in a constant acceleration formula which would lead to finding v_B
	Difference = 10 ms^{-1}	A1	CWO
		3	

Question	Answer	Mark	Guidance
6(i)	$4.5 = 0 + \frac{1}{2} \times a \times 5^2$	M1	For use of $s = ut + \frac{1}{2}at^2$ to find a
	a = 0.36	A1	
	$6 \times \frac{24}{25} - F = 3 \times 0.36$	M1	Resolving horizontally. Allow use of $\theta = 16.3$
	F = 4.68 N	A1	
		4	
6(ii)	$R = 3g - 6\sin 16.3 = 3g - 6 \times \frac{7}{25} \qquad [= 28.32]$	B1	
	$4.68 = \mu \times 28.32$	M1	Use of $F = \mu R$
	$\mu = 0.165 \ (0.165254)$	A1	AG. Allow $\mu = \frac{39}{236}$
		3	

Question	Answer	Mark	Guidance
6(iii)	$v = 5 \times 0.36 [= 1.8]$ or $v = \sqrt{(2 \times 0.36 \times 4.5)} [= 1.8]$	B1FT	For velocity at $t = 5$ ft on <i>their a</i> from 6(i)
	$3a = -0.165 \times 3g$	M1	Using Newton's second law with new frictional force
	0 = 1.8 - 0.165gt (t = 1.09)	M1	Using constant acceleration equations which would lead to a positive value of <i>t</i>
	Total time = $5 + 1.09 = 6.09$ s	A1	
		4	

Question	Answer	Mark	Guidance
7(i)		M1	Use of Newton's second law for P or Q or the system
	For P: $T - 0.3g \times \frac{3}{5} = T - 0.3g \sin 36.9 = 0.3a$ For Q: $0.2g - T = 0.2a$ System: $0.2g - 0.3g \times \frac{3}{5} = (0.2 + 0.3)a$ or $0.2g - 0.3g \sin 36.9 = (0.2 + 0.3)a$	A1	Two correct equations Allow use of $\theta = 36.9$
	[0.2g - 0.18g = 0.5a]	M1	For solving either the system for a or for solving a pair of simultaneous equations for a or T
	$a = 0.4 \text{ ms}^{-2}$	A1	
	T = 1.92 N	A1	
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Guidance
7(ii)	$0.8 = 0 + \frac{1}{2} \times 0.4 \times t^2$ a	M1	For use of the constant acceleration equations with <i>their a</i> from 7(i) and $a \neq \pm g$ for a complete method to find <i>t</i>
	t = 2 s	A1	
		2	
7(iii)	Speed when Q hits the floor = 2×0.4 (= 0.8) or $v = \sqrt{(2 \times 0.4 \times 0.8)} [= 0.8]$	B1FT	Using $v = u + at$ with $u = 0$ Allow FT for <i>their</i> unsimplified $v = at$ or $v^2 = 2as$ with <i>a</i> from (i), <i>t</i> from (ii) and $s = 0.8$
	$-0.3g \times \frac{3}{5} = -0.3g \sin 36.9 = 0.3a \ [a = -6]$	M1	Using Newton's second law for <i>P</i> to find $a \neq \pm g$
	$0 = 0.8t + \frac{1}{2} \times (-6)t^{2} (t = 0.2666)$ or 0 = 0.8 - 6T $(T = 0.13333 = \frac{2}{15} \text{ and } t = 2T = 0.26666 = \frac{4}{15})$	M1	Use of the constant acceleration equation(s) to find the time taken for P to return to the position where the string first became slack.
	Total time = 2 + 0.266 = 2 + $\frac{4}{15}$ = 2.27 = $\frac{34}{15}$ s	A1	
		4	