Question	Answer						Marks	Guidance
1	$20000=V \times 1250 g$	$\mathbf{M 1}$	Use of $P=F v$ with $F=m g$					
	$V=1.6$	$\mathbf{A 1}$						
		$\mathbf{2}$						

Question	Answer	Marks	Guidance
2	$\begin{aligned} & \text { Initial } K E=\frac{1}{2} \times 75 \times 10^{2} \\ & \text { Final } K E=\frac{1}{2} \times 75 \times 5^{2} \end{aligned}$	B1	Either correct
	PE gained $=75 \mathrm{~g} \times 700 \sin 1.5 \quad[=13743]$	B1	
	WD by $F=F \times 700$	B1	For WD by $F=F \times d$
	WD by $F+$ Initial $\mathrm{KE}=$ Final $\mathrm{KE}+\mathrm{PE}$ gain +2000	M1	Use of work-energy equation. 5 dimensionally correct terms.
	$F=18.5$	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$R=3 g \cos 60$	B1	
	Use $F=\mu R$	M1	
	$[3 g \sin 60-\mu 3 g \cos 60-15=0]$	M1	Resolve forces parallel to the plane, 3 terms
		A1	Correct equation
	$\mu=0.732$	A1	Allow $\mu=\sqrt{3}-1$
		5	
3(ii)	$\begin{aligned} {[\text { Maximum force }} & =3 g \sin 60+F \\ & =3 \sin 60+\mu 3 g \cos 60] \end{aligned}$	M1	
	$X=37(.0)$	A1	Allow $X=15(2 \sqrt{3-1})$
		2	

Question	Answer	Marks	Guidance
4(i)	Apply Newton's second law to either or to the system	M1	
	Block A : $\quad T-4 g \times \frac{7}{25}=4 a$ Block B: $\quad 36-T-5 g \times \frac{7}{25}=5 a$ System: $\quad 36-5 g \times \frac{7}{25}-4 g \times \frac{7}{25}=9 a$	A1	Any two correct. Allow $\alpha=16.3$ used.
	Either solving the system for a or solving a pair of simultaneous equations for either a or T	M1	
	$a=1.2 \mathrm{~ms}^{-2}$	A1	
	$T=16 \mathrm{~N}$	A1	
		5	
4(ii)	$\left[0.65=1 \times t+\frac{1}{2} \times 1.2 t^{2}\right]$	M1	Use constant acceleration equation(s) with $u=1$ and solve a 3 term quadratic equation to find t
	$t=0.5 \mathrm{~s}$	A1	
	Alternative method for question 4(ii)		
	$v^{2}=1^{2}+2 \times 1.2 \times 0.65 \quad[v=1.6] \quad \text { and } 0.65=\frac{1}{2}(1+v) \times t$	M1	Use relevant constant acceleration equations with $u=1$ in a complete method to find t
	$t=0.5 \mathrm{~s}$	A1	
		2	

Question	Answer	Marks	Guidance
5(i)	Resolve forces either horizontally or vertically	M1	
	$7.5 \cos 60+4.5 \cos 20=F \cos \theta \quad[=7.97861]$	A1	
	$7.5 \sin 60-4.5 \sin 20=F \sin \theta \quad[=4.95609]$	A1	
	$F=\sqrt{\left(7.98^{2}+4.96^{2}\right)}$	M1	Use Pythagoras or use the value found for θ to find F
	$\theta=\tan ^{-1}\left(\frac{4.96}{7.98}\right)$	M1	Use trigonometry or the value found for F to find θ
	$F=9.39$ and $\theta=31.8$	A1	
	Alternative method for question 5(i)		
	$\frac{F}{\sin 80}=\frac{4.5}{\sin (120+\theta)}=\frac{7.5}{\sin (160-\theta)}$	M1	Attempt to use Lami
		A1	One correct pair of terms
		A1	A second correct pair of terms
	$[4.5 \sin (160-\theta)=7.5 \sin (120+\theta)]$	M1	Attempt to solve for θ
	Use the θ value found by valid trigonometry to find F	M1	
	$F=9.39$ and $\theta=31.8$	A1	

Question	Answer	Marks	Guidance
5(i)	Alternative method for question 5(i)		
	Forces 4.5, 7.5, F opposite angles $60-\theta, \theta+20,100$	M1	Illustrate a triangle of forces
	$\left[F^{2}=4.5^{2}+7.5^{2}-2 \times 4.5 \times 7.5 \times \cos 100\right]$	M1	For application of cosine rule to find F
		A1	Correct equation
	$\left[\frac{9.39}{\sin 100}=\frac{4.5}{\sin (60-\theta)}=\frac{7.5}{\sin (\theta+20)}\right]$	M1	One application of the sine rule to find θ
		A1	Correct equation
	$F=9.39$ and $\theta=31.8$	A1	
		6	
5(ii)	$9.5 \cos 30-7.5 \cos 60-4.5 \cos 20=m \times 1.5$	M1	Apply Newton's second law to the ring along $A B$ (4 terms)
	$m=0.166 \mathrm{~kg}$	A1	
		2	

Question	Answer	Marks	Guidance
6(i)	$0.4 \mathrm{~g} \times 1.8=\frac{1}{2} \times 0.4 \times v^{2}$	M1	KE gain $=\mathrm{PE}$ lost
	$v=6 \mathrm{~ms}^{-1}$	A1	
	Alternative method for question 6(i)		
	$v^{2}=0^{2}+2 \times g \times 1.8$	M1	Use constant acceleration equation(s) with $a=g$ to find v
	$v=6 \mathrm{~ms}^{-1}$	A1	
		2	
6(ii)	$0.4 g-5.6=0.4 a$	M1	Use Newton's second law for the particle in the vertical (3 terms)
	$a=-4 \mathrm{~ms}^{-2}$	A1	
	$0=6-4 t$	M1	Use of constant acceleration equation(s) such as $v=u+a t$ to find t
	$t=1.5 \mathrm{~s}$	A1	
		4	
6(iii)	Straight line starting at (0,0) with positive gradient	B1	
	Second straight line starting at end of the first line with negative gradient and ending with $v=0$	B1	
	All correct, start at $(0,0)$ with max velocity $v=6$ at $t=0.6$ i.e. $(0.6,6)$ and finishing at $(2.1,0)$	B1FT	FT on their v from (i) and/or their t from (ii)
		3	

Question	Answer	Marks	Guidance
7(i)	$0.6 t^{2}-0.12 t^{3}=0$	M1	For attempting to solve $v=0$
	($t=0$ or) $t=5$	A1	
	$\int_{v} \mathrm{~d} t=0.2 t^{3}-0.03 t^{4}$	*M1	For integrating the velocity
	$O P=\left[0.2 \times 5^{3}-0.03 \times 5^{4}\right]-[0]$	DM1	Use limits to find $O P$
	Distance $=6.25 \mathrm{~m}$	A1	AG
		5	
7(ii)	$k \times 5^{3}+c \times 5^{5}=6.25$	B1	Using $s=6.25$ at $t=5$ to set up equation in k and c
	$v=3 k t^{2}+5 c t^{4}$	*M1	For differentiating s to find v
	$1.25=3 k \times 5^{2}+5 c \times 5^{4}$	DM1	For using the given value of $v=1.25$ in the expression for v
	$\begin{aligned} & 125 k+3125 c=6.25 \\ & 75 k+3125 c=1.25 \end{aligned}$	M1	For attempting to solve a pair of simultaneous equations in k and c and finding a value of either k or c
	$k=0.1, c=-0.002$	A1	
		5	
7(iii)	$a=0.6 t-0.04 t^{3}$	M1	For differentiating their expression for v
	At $t=5, a=-2 \quad$ Acceleration $=-2 \mathrm{~ms}^{-2}$	A1	
		2	

