Question	Answer	Marks	Guidance
1	$20\ 000 = V \times 1250g$	M1	Use of $P = Fv$ with $F = mg$
	<i>V</i> = 1.6	A1	
		2	

Question	Answer	Marks	Guidance
2	Initial $KE = \frac{1}{2} \times 75 \times 10^2$	B1	Either correct
	Final $KE = \frac{1}{2} \times 75 \times 5^2$		
	PE gained = $75g \times 700 \sin 1.5$ [=13 743]	B1	
	WD by $F = F \times 700$	B1	For WD by $F = F \times d$
	WD by F + Initial KE = Final KE + PE gain + 2000	M1	Use of work-energy equation. 5 dimensionally correct terms.
	F = 18.5	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$R = 3 g \cos 60$	B1	
	Use $F = \mu R$	M1	
	$[3g\sin 60 - \mu 3g\cos 60 - 15 = 0]$	M1	Resolve forces parallel to the plane, 3 terms
		A1	Correct equation
	$\mu = 0.732$	A1	Allow $\mu = \sqrt{3} - 1$
		5	
3(ii)	[Maximum force = $3g\sin 60 + F$ = $3\sin 60 + \mu 3g\cos 60$]	M1	
	X = 37(.0)	A1	Allow $X = 15(2\sqrt{3}-1)$
		2	

Question	Answer	Marks	Guidance
4(i)	Apply Newton's second law to either or to the system	M1	
	Block A: $T - 4g \times \frac{7}{25} = 4a$ Block B: $36 - T - 5g \times \frac{7}{25} = 5a$ System: $36 - 5g \times \frac{7}{25} - 4g \times \frac{7}{25} = 9a$	A1	Any two correct. Allow $\alpha = 16.3$ used.
	Either solving the system for a or solving a pair of simultaneous equations for either a or T	M1	
	$a = 1.2 \text{ ms}^{-2}$	A1	
	T = 16 N	A1	
		5	
4(ii)	$\left[0.65 = 1 \times t + \frac{1}{2} \times 1.2t^2\right]$	M1	Use constant acceleration equation(s) with $u = 1$ and solve a 3 term quadratic equation to find t
	t = 0.5 s	A1	
	Alternative method for question 4(ii)	1	
	$v^2 = 1^2 + 2 \times 1.2 \times 0.65$ [$v = 1.6$] and $0.65 = \frac{1}{2}(1+v) \times t$	M1	Use relevant constant acceleration equations with $u = 1$ in a complete method to find t
	t = 0.5 s	A1	
		2	

Question	Answer	Marks	Guidance
5(i)	Resolve forces either horizontally or vertically	M1	
	$7.5\cos 60 + 4.5\cos 20 = F\cos \theta$ [= 7.97861]	A1	
	$7.5\sin 60 - 4.5\sin 20 = F\sin \theta$ [= 4.95609]	A1	
	$F = \sqrt{\left(7.98^2 + 4.96^2\right)}$	M1	Use Pythagoras or use the value found for θ to find F
	$\theta = \tan^{-1}(\frac{4.96}{7.98})$	M1	Use trigonometry or the value found for F to find θ
	$F = 9.39$ and $\theta = 31.8$	A1	
	Alternative method for question 5(i)		
	$\frac{F}{\sin 80} = \frac{4.5}{\sin(120+\theta)} = \frac{7.5}{\sin(160-\theta)}$	M1	Attempt to use Lami
		A1	One correct pair of terms
		A1	A second correct pair of terms
	$[4.5\sin(160 - \theta) = 7.5\sin(120 + \theta)]$	M1	Attempt to solve for θ
	Use the θ value found by valid trigonometry to find F	M1	
	$F = 9.39 \text{ and } \theta = 31.8$	A1	

9709 w19 ms 41

Question	Answer	Marks	Guidance
5(i)	Alternative method for question 5(i)		
	Forces 4.5, 7.5, F opposite angles $60 - \theta$, $\theta + 20$, 100	M1	Illustrate a triangle of forces
	$[F^2 = 4.5^2 + 7.5^2 - 2 \times 4.5 \times 7.5 \times \cos 100]$	M1	For application of cosine rule to find <i>F</i>
		A1	Correct equation
	$\left[\frac{9.39}{\sin 100} = \frac{4.5}{\sin(60-\theta)} = \frac{7.5}{\sin(\theta+20)}\right]$	M1	One application of the sine rule to find θ
		A1	Correct equation
	$F = 9.39$ and $\theta = 31.8$	A1	
		6	
5(ii)	$9.5\cos 30 - 7.5\cos 60 - 4.5\cos 20 = m \times 1.5$	M1	Apply Newton's second law to the ring along <i>AB</i> (4 terms)
	m = 0.166 kg	A1	
		2	

Question	Answer	Marks	Guidance
6(i)	$0.4g \times 1.8 = \frac{1}{2} \times 0.4 \times v^2$	M1	KE gain = PE lost
	$v = 6 \text{ ms}^{-1}$	A1	
	Alternative method for question 6(i)		
	$v^2 = 0^2 + 2 \times g \times 1.8$	M1	Use constant acceleration equation(s) with $a = g$ to find v
	$v = 6 \text{ ms}^{-1}$	A1	
		2	
6(ii)	0.4g - 5.6 = 0.4a	M1	Use Newton's second law for the particle in the vertical (3 terms)
	$a = -4 \text{ ms}^{-2}$	A1	
	0 = 6 - 4t	M1	Use of constant acceleration equation(s) such as $v = u + at$ to find <i>t</i>
	t = 1.5 s	A1	
		4	
6(iii)	Straight line starting at (0,0) with positive gradient	B1	
	Second straight line starting at end of the first line with negative gradient and ending with $v = 0$	B1	
	All correct, start at $(0, 0)$ with max velocity $v = 6$ at $t = 0.6$ i.e. $(0.6, 6)$ and finishing at $(2.1, 0)$	B1FT	FT on <i>their v</i> from (i) and/or <i>their t</i> from (ii)
		3	

Question	Answer	Marks	Guidance
7(i)	$0.6t^2 - 0.12t^3 = 0$	M1	For attempting to solve $v = 0$
	(t = 0 or) t = 5	A1	
	$\int v \mathrm{d}t = 0.2t^3 - 0.03t^4$	*M1	For integrating the velocity
	$OP = [0.2 \times 5^3 - 0.03 \times 5^4] - [0]$	DM1	Use limits to find <i>OP</i>
	Distance = 6.25 m	A1	AG
		5	
7(ii)	$k \times 5^3 + c \times 5^5 = 6.25$	B1	Using $s = 6.25$ at $t = 5$ to set up equation in k and c
	$v = 3kt^2 + 5ct^4$	*M1	For differentiating <i>s</i> to find <i>v</i>
	$1.25 = 3k \times 5^2 + 5c \times 5^4$	DM1	For using the given value of $v = 1.25$ in the expression for v
	125k + 3125c = 6.25 75k + 3125c = 1.25	M1	For attempting to solve a pair of simultaneous equations in k and c and finding a value of either k or c
	k = 0.1, c = -0.002	A1	
		5	
7(iii)	$a = 0.6t - 0.04t^3$	M1	For differentiating their expression for <i>v</i>
	At $t = 5$, $a = -2$ Acceleration $= -2 \text{ ms}^{-2}$	A1	
		2	