| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 1 | State or imply non-modular inequality $(x+2)^{2}>(3 x-1)^{2}$, or corresponding quadratic equation, or pair of linear equations $2(x+2)= \pm(3 x-1)$ | B1 |  |
|  | Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for $x$ | M1 |  |
|  | Obtain critical values $x=-\frac{3}{5}$ and $x=5$ | A1 |  |
|  | State final answer $-\frac{3}{5}<x<5$ | A1 |  |
|  | Alternative method for question 1 |  |  |
|  | Obtain critical value $x=5$ from a graphical method, or by inspection, or by solving a linear equation or an inequality | B1 |  |
|  | Obtain critical value $x=-\frac{3}{5}$ similarly | B2 |  |
|  | State final answer $-\frac{3}{5}<x<5$ | B1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 2 | Substitute $x=-\frac{1}{2}$, equate result to zero and obtain a correct equation, e.g. $-\frac{6}{8}+\frac{1}{4} a-\frac{1}{2} b-2=0$ | B1 |  |
|  | Substitute $x=-2$ and equate result to -24 | *M1 |  |
|  | Obtain a correct equation, e.g. $-48+4 a-2 b-2=-24$ | A1 |  |
|  | Solve for $a$ or for $b$ | DM1 |  |
|  | Obtain $a=5$ and $b=-3$ | A1 |  |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: |
| 3 | Reduce the equation to a horizontal equation in $3^{3 x}, 3^{3 x+1}$ or $27^{x}$ | M1 |  |
|  | Simplify and reach $3\left(3^{3 x}\right)=5,3\left(27^{x}\right)=5$, or equivalent | A1 |  |
|  | Use correct method for finding $x$ from a positive value of $3^{3 x}, 3^{3 x+1}$ or $27^{x}$ | M1 |  |
|  | Obtain answer $x=0.155$ | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4(i) | Use $\tan (A+B)$ formula to express the LHS in terms of $\tan 2 x$ and $\tan x$ | M1 |  |
|  | Using the $\tan 2 A$ formula, express the entire equation in terms of $\tan x$ | M1 |  |
|  | Obtain a correct equation in $\tan x$ in any form | A1 |  |
|  | Obtain the given form correctly | A1 | AG |
|  |  | 4 |  |
| 4(ii) | Use correct method to solve the given equation for $x$ | M1 |  |
|  | Obtain answer, e.g. $x=26.8^{\circ}$ | A1 |  |
|  | Obtain second answer, e.g. $x=73.7^{\circ}$ and no other | A1 | Ignore answers outside the given interval |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: |
| $5(\mathrm{i})$ | Sketch a relevant graph, e.g. $y=\ln (x+2)$ | $\mathbf{B 1}$ |  |
|  | Sketch a second relevant graph, e.g. $y=4 \mathrm{e}^{-x}$, and justify the given statement | B1 | Consideration of behaviour for $x<0$ is <br> needed for the second B1 |
|  | 5(ii) | Calculate the values of a relevant expression or pair of expressions at $x=1$ and $x=1.5$ | $\mathbf{2}$ |
|  | Complete the argument correctly with correct calculated values | M1 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | :---: | :---: |
| 5 (iii) | Use the iterative formula correctly at least twice using output from a previous <br> iteration | M1 |  |
|  | Obtain final answer 1.23 | A1 |  |
|  | Show sufficient iterations to 4 d.p. to justify 1.23 to 2 d.p., or show there is a sign <br> change in the interval (1.225, 1.235) | A1 |  |
|  |  | $\mathbf{3}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6 (i) | Obtain answer $w=\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}$ | B1 |  |
|  |  | 1 |  |
| 6(ii) | Show point representing $u$ | B1 |  |
|  | Show point representing $v$ in relatively correct position | B1 |  |
|  |  | 2 |  |
| 6(iii) | Explain why the moduli are equal | B1 |  |
|  | Explain why the arguments are equal | B1 |  |
|  | Use $\mathrm{i}^{2}=-1$ and obtain $2 u w$ in the given form | M1 |  |
|  | Obtain answer $1-2 \sqrt{3}+(2+\sqrt{3}) \mathrm{i}$ | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7(i) | Substitute coordinates (5, 2, -2) in $x+4 y-8 z=d$ | M1 |  |
|  | Obtain plane equation $x+4 y-8 z=29$, or equivalent | A1 |  |
|  |  | 2 |  |
| 7(ii) | Attempt to use perpendicular formula to find perpendicular from (5, 2, -2) to m | M1 |  |
|  | Obtain a correct unsimplified expression, e.g. $\frac{5+8+16-2}{\sqrt{(1+16+64)}}$ | A1 |  |
|  | Obtain answer 3 | A1 |  |
|  | Alternative method 1 for question 7(ii) |  |  |
|  | State or imply perpendicular from $O$ to $m$ is $\frac{2}{9}$ or from $O$ to $n$ is $\frac{29}{9}$ | B1 |  |
|  | Find difference in perpendiculars | M1 |  |
|  | Obtain answer 3 | A1 |  |
|  | Alternative method 2 for question 7(ii) |  |  |
|  | Obtain correct parameter value, or position vector or coordinates of the foot of the perpendicular from $(5,2,-2)$ to $m$, e.g. $\mu= \pm \frac{1}{3} ;\left(\frac{14}{3}, \frac{2}{3}, \frac{2}{3}\right)$ | B1 |  |
|  | Calculate the length of the perpendicular | M1 |  |
|  | Obtain answer 3 | B1 |  |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7(iii) | Calling the direction vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$, use a scalar product to form a relevant equation in $a, b$ and $c$, e.g. $a+4 b-8 c=0$ or $5 a+2 b-2 z=0$ | B1 |  |
|  | Solve two relevant equations for the ratio $a: b: c$ | M1 |  |
|  | Obtain $a: b: c=4:-19:-9$ | A1 | OE |
|  | State answer $\mathbf{r}=5 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}+\lambda(4 \mathbf{i}-19 \mathbf{j}-9 \mathbf{k})$ | A1 | OE |
|  | Alternative method for question 7(iii) |  |  |
|  | Attempt to calculate vector product of two relevant vectors, e.g. $(\mathbf{i}+4 \mathbf{j}-8 \mathbf{k}) \times(5 \mathbf{i}+$ $2 \mathrm{j}-2 \mathrm{k}$ ) | M1 |  |
|  | Obtain two correct components | A1 |  |
|  | Obtain $8 \mathbf{i}-38 \mathbf{j}-18 \mathbf{k}$ | A1 | OE |
|  | State answer $\mathbf{r}=5 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}+\lambda(4 \mathbf{i}-19 \mathbf{j}-9 \mathbf{k})$ | A1 | OE |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 8(i) | State or imply ordinates 1, 1.2116..., 2.7597... | B1 |  |
|  | Use correct formula, or equivalent, with $h=0.6$ | M1 |  |
|  | Obtain answer 1.85 | A1 |  |
|  |  | 3 |  |
| 8(ii) | Explain why the rule gives an overestimate | B1 |  |
|  |  | 1 |  |
| 8(iii) | Differentiate using quotient or chain rule | M1 |  |
|  | Obtain correct derivative in terms of $\sin x$ and $\cos x$ | A1 |  |
|  | Equate derivative to 2, use Pythagoras and obtain an equation in $\sin x$ | M1 |  |
|  | Obtain $2 \sin ^{2} x+\sin x-2=0$ | A1 | OE |
|  | Solve a 3-term quadratic for $x$ | M1 |  |
|  | Obtain answer $x=0.896$ only | A1 |  |
|  |  | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 9(i) | Separate variables correctly and integrate one side | B1 |  |
|  | Obtain term $0.2 t$, or equivalent | B1 |  |
|  | Carry out a relevant method to obtain $A$ and $B$ such that $\frac{1}{(20-x)(40-x)} \equiv \frac{A}{20-x}+\frac{B}{40-x}$ | *M1 | OE |
|  | Obtain $A=\frac{1}{20}$ and $B=-\frac{1}{20}$ | A1 |  |
|  | Integrate and obtain terms $-\frac{1}{20} \ln (20-x)+\frac{1}{20} \ln (40-x)$ OE | $\begin{array}{r} \text { A1FT } \\ +\mathbf{A 1 F T} \end{array}$ | The FT is on $A$ and $B$ |
|  | Use $x=10, t=0$ to evaluate a constant, or as limits | DM1 |  |
|  | Obtain correct answer in any form | A1 |  |
|  | Obtain final answer $x=\frac{60 \mathrm{e}^{4 t}-40}{3 \mathrm{e}^{4 t}-1}$ | A1 | OE |
|  |  | 9 |  |
| 9(ii) | State that $x$ approaches 20 | B1 |  |
|  |  | 1 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 10(i) | Use product rule and chain rule at least once | M1 |  |
|  | Obtain correct derivative in any form | A1 |  |
|  | Equate derivative to zero, use Pythagoras and obtain an equation in $\cos x$ | M1 |  |
|  | Obtain $\cos ^{2} x+3 \cos x-1=0$, or 3-term equivalent | A1 |  |
|  | Obtain answer $x=1.26$ | A1 |  |
|  |  | 5 |  |
| 10(ii) | Using $\mathrm{d} u= \pm \sin x \mathrm{~d} x$ express integrand in terms of $u$ and $\mathrm{d} u$ | M1 |  |
|  | Obtain integrand $\mathrm{e}^{u}\left(u^{2}-1\right)$ | A1 | OE |
|  | Commence integration by parts and reach $a \mathrm{e}^{u}\left(u^{2}-1\right)+b \int u \mathrm{e}^{u} \mathrm{~d} u$ | *M1 |  |
|  | Obtain $\mathrm{e}^{u}\left(u^{2}-1\right)-2 \int u \mathrm{e}^{u} \mathrm{~d} u$ | A1 | OE |
|  | Complete integration, obtaining $\mathrm{e}^{u}\left(u^{2}-2 u+1\right)$ | A1 | OE |
|  | Substitute limits $u=1$ and $u=-1$ (or $x=0$ and $x=\pi$ ), having integrated completely | DM1 |  |
|  | Obtain answer $\frac{4}{\mathrm{e}}$, or exact equivalent | A1 |  |
|  |  | 7 |  |

