Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
1	State or imply non-modular inequality $(x+2)^2 > (3x-1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x+2) = \pm (3x-1)$	B1	
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	
	Obtain critical values $x = -\frac{3}{5}$ and $x = 5$	A1	
	State final answer $-\frac{3}{5} < x < 5$	A1	
	Alternative method for question 1		
	Obtain critical value $x = 5$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	B1	
	Obtain critical value $x = -\frac{3}{5}$ similarly	B2	
	State final answer $-\frac{3}{5} < x < 5$	B1	
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
2	Substitute $x = -\frac{1}{2}$, equate result to zero and obtain a correct equation, e.g. $-\frac{6}{8} + \frac{1}{4}a - \frac{1}{2}b - 2 = 0$	B1	
	Substitute $x = -2$ and equate result to -24	*M1	
	Obtain a correct equation, e.g. $-48 + 4a - 2b - 2 = -24$	A1	
	Solve for <i>a</i> or for <i>b</i>	DM1	
	Obtain $a = 5$ and $b = -3$	A1	
		5	

Question	Answer	Marks	Guidance
3	Reduce the equation to a horizontal equation in 3^{3x} , 3^{3x+1} or 27^{x}	M1	
	Simplify and reach $3(3^{3x}) = 5$, $3(27^x) = 5$, or equivalent	A1	
	Use correct method for finding x from a positive value of 3^{3x} , 3^{3x+1} or 27^{x}	M1	
	Obtain answer $x = 0.155$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

9709_w19_ms_33

Question	Answer	Marks	Guidance
4(i)	Use $\tan (A + B)$ formula to express the LHS in terms of $\tan 2x$ and $\tan x$	M1	
	Using the tan 2A formula, express the entire equation in terms of tan x	M1	
	Obtain a correct equation in tan x in any form	A1	
	Obtain the given form correctly	A1	AG
		4	
4(ii)	Use correct method to solve the given equation for <i>x</i>	M1	
	Obtain answer, e.g. $x = 26.8^{\circ}$	A1	
	Obtain second answer, e.g. $x = 73.7^{\circ}$ and no other	A1	Ignore answers outside the given interval
		3	

Question	Answer	Marks	Guidance
5(i)	Sketch a relevant graph, e.g. $y = \ln(x+2)$	B1	
	Sketch a second relevant graph, e.g. $y = 4e^{-x}$, and justify the given statement	B1	Consideration of behaviour for $x < 0$ is needed for the second B1
		2	
5(ii)	Calculate the values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(iii)	Use the iterative formula correctly at least twice using output from a previous iteration	M1	
	Obtain final answer 1.23	A1	
	Show sufficient iterations to 4 d.p. to justify 1.23 to 2 d.p., or show there is a sign change in the interval (1.225, 1.235)	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Obtain answer $w = \frac{1}{2} + \frac{\sqrt{3}}{2}i$	B1	
		1	
6(ii)	Show point representing <i>u</i>	B1	
	Show point representing v in relatively correct position	B1	
		2	
6(iii)	Explain why the moduli are equal	B1	
	Explain why the arguments are equal	B1	
	Use $i^2 = -1$ and obtain $2uw$ in the given form	M1	
	Obtain answer $1 - 2\sqrt{3} + (2 + \sqrt{3})i$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
7(i)	Substitute coordinates $(5, 2, -2)$ in $x + 4y - 8z = d$	M1	
	Obtain plane equation $x + 4y - 8z = 29$, or equivalent	A1	
		2	
7(ii)	Attempt to use perpendicular formula to find perpendicular from $(5, 2, -2)$ to <i>m</i>	M1	
	Obtain a correct unsimplified expression, e.g. $\frac{5+8+16-2}{\sqrt{(1+16+64)}}$	A1	
	Obtain answer 3	A1	
	Alternative method 1 for question 7(ii)		
	State or imply perpendicular from <i>O</i> to <i>m</i> is $\frac{2}{9}$ or from <i>O</i> to <i>n</i> is $\frac{29}{9}$	B1	
	Find difference in perpendiculars	M1	
	Obtain answer 3	A1	
	Alternative method 2 for question 7(ii)		
	Obtain correct parameter value, or position vector or coordinates of the foot of the perpendicular from (5, 2, -2) to <i>m</i> , e.g. $\mu = \pm \frac{1}{3}$; $\left(\frac{14}{3}, \frac{2}{3}, \frac{2}{3}\right)$	B1	
	Calculate the length of the perpendicular	M1	
	Obtain answer 3	B1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
7(iii)	Calling the direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, use a scalar product to form a relevant equation in a , b and c , e.g. $a + 4b - 8c = 0$ or $5a + 2b - 2z = 0$	B1	
	Solve two relevant equations for the ratio $a : b : c$	M1	
	Obtain $a: b: c = 4: -19: -9$	A1	OE
	State answer $\mathbf{r} = 5\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \lambda(4\mathbf{i} - 19\mathbf{j} - 9\mathbf{k})$	A1	OE
	Alternative method for question 7(iii)		
	Attempt to calculate vector product of two relevant vectors, e.g. $(i + 4j - 8k) \times (5i + 2j - 2k)$	M1	
	Obtain two correct components	A1	
	Obtain $8\mathbf{i} - 38\mathbf{j} - 18\mathbf{k}$	A1	OE
	State answer $\mathbf{r} = 5\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \lambda(4\mathbf{i} - 19\mathbf{j} - 9\mathbf{k})$	A1	OE
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
8(i)	State or imply ordinates 1, 1.2116, 2.7597	B1	
	Use correct formula, or equivalent, with $h = 0.6$	M1	
	Obtain answer 1.85	A1	
		3	
8(ii)	Explain why the rule gives an overestimate	B1	
		1	
8(iii)	Differentiate using quotient or chain rule	M1	
	Obtain correct derivative in terms of $\sin x$ and $\cos x$	A1	
	Equate derivative to 2, use Pythagoras and obtain an equation in $\sin x$	M1	
	$Obtain 2\sin^2 x + \sin x - 2 = 0$	A1	OE
	Solve a 3-term quadratic for <i>x</i>	M1	
	Obtain answer $x = 0.896$ only	A1	
		6	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
9(i)	Separate variables correctly and integrate one side	B1	
	Obtain term 0.2 <i>t</i> , or equivalent	B1	
	Carry out a relevant method to obtain A and B such that $\frac{1}{(20-x)(40-x)} \equiv \frac{A}{20-x} + \frac{B}{40-x}$	*M1	OE
	Obtain $A = \frac{1}{20}$ and $B = -\frac{1}{20}$	A1	
	Integrate and obtain terms $-\frac{1}{20}\ln(20-x) + \frac{1}{20}\ln(40-x)$ OE	A1FT +A1FT	The FT is on A and B
	Use $x = 10$, $t = 0$ to evaluate a constant, or as limits	DM1	
	Obtain correct answer in any form	A1	
	Obtain final answer $x = \frac{60e^{4t} - 40}{3e^{4t} - 1}$	A1	OE
		9	
9(ii)	State that <i>x</i> approaches 20	B1	
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
10(i)	Use product rule and chain rule at least once	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero, use Pythagoras and obtain an equation in $\cos x$	M1	
	Obtain $\cos^2 x + 3\cos x - 1 = 0$, or 3-term equivalent	A1	
	Obtain answer $x = 1.26$	A1	
		5	
10(ii)	Using $du = \pm \sin x dx$ express integrand in terms of <i>u</i> and du	M1	
	Obtain integrand $e^{u}(u^{2}-1)$	A1	OE
	Commence integration by parts and reach $ae^{u}(u^{2}-1)+b\int ue^{u} du$	*M1	
	Obtain $e^u (u^2 - 1) - 2 \int u e^u du$	A1	OE
	Complete integration, obtaining $e^{u}(u^2 - 2u + 1)$	A1	OE
	Substitute limits $u = 1$ and $u = -1$ (or $x = 0$ and $x = \pi$), having integrated completely	DM1	
	Obtain answer $\frac{4}{e}$, or exact equivalent	A1	
		7	