Question	Answer	Marks	Guidance
1	Remove logarithms and state $4-3^{x}=\mathrm{e}^{1.2}$, or equivalent	B1	Accept $4-3^{x}=3.32(01169 \ldots . .)$.3 s.f. or better
	Use correct method to solve an equation of the form $3^{x}=a$, where $a>0$.	M1	$\left(3^{x}=0.67988 ..\right)$ Complete method to $x=\ldots$ If using log 3 the subscript can be implied
	Obtain answer $x=-0.351$ only	A1	CAO must be to 3 d.p.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	Use correct quotient rule or correct product rule	M1	
	Obtain correct derivative in any form	A1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 \mathrm{e}^{-2 x}\left(1-x^{2}\right)+2 x \mathrm{e}^{-2 x}}{\left(1-x^{2}\right)^{2}}$
	Equate derivative to zero and obtain a 3 term quadratic in x	M1	
	Obtain a correct 3-term equation e.g. $2 x^{2}+2 x-2=0$ or $x^{2}+x=1$	A1	From correct work only
	Solve and obtain $x=0.618$ only	A1	From correct work only
		5	

Question	Answer	Marks	Guidance
3	Commence division and reach partial quotient $x^{2}+k x$	M1	
	Obtain correct quotient $x^{2}+2 x-1$	A1	
	Set their linear remainder equal to $2 x+3$ and solve for a or for b	M1	Remainder $=(a+3) x+(b-1)$
	Obtain answer $a=-1$	A1	
	Obtain answer $b=4$	A1	
	Alternative method for question 3		
	State $x^{4}+3 x^{3}+a x+b=\left(x^{2}+x-1\right)\left(x^{2}+A x+B\right)+2 x+3$ and form and solve two equations in A and B	M1	e.g. $3=1+A$ and $0=-1+A+B$
	Obtain $A=2, B=-1$	A1	
	Form and solve equations for a or b	M1	e.g. $a=B-A+2, \quad b=-B+3$
	Obtain answer $a=-1$	A1	
	Obtain answer $b=4$	A1	
		5	

Question	Answer	Marks	Guidance
3	Alternative method for question 3		
	Use remainder theorem with $x=\frac{-1 \pm \sqrt{5}}{2}$	M1	Allow for correct use of either root in exact or decimal form.
	Obtain $-\frac{a}{2} \pm \frac{a \sqrt{5}}{2}+b=\frac{9}{2} \mp \frac{\sqrt{5}}{2}$	A1	Expand brackets and obtain exact equation for either root. Accept exact equivalent.
	Solve simultaneous equations for a or b	M1	
	Obtain answer $a=-1$ from exact working	A1	
	Obtain answer $b=4$ from exact working	A1	
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	State $R=\sqrt{7}$	B1	
	Use correct trig formulae to find α	M1	e.g. $\tan \alpha=\frac{1}{\sqrt{6}}, \sin \alpha=\frac{1}{\sqrt{7}}$, or $\cos \alpha=\frac{\sqrt{6}}{\sqrt{7}}$
		Obtain $\alpha=22.208^{\circ}$	A1
		ISW	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	Evaluate $\sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)$ to at least 1 d.p.	B1FT	49.107° to 3 d.p. B1 can be implied by correct answer(s) later. The FT is on their R
			SC: allow B1 for a correct alternative equation e.g. $3 \tan ^{2} \theta-2 \sqrt{6} \tan \theta+1=0$
	Use correct method to find a value of θ in the interval	M1	Must get to θ
	Obtain answer, e.g. $13.4{ }^{\circ}$	A1	Accept correct over-specified answers. $13.449 \ldots, 54.3425 \ldots$
	Obtain second answer, e.g. 54.3° and no extras in the given interval	A1	Ignore answers outside the given interval.
		4	

Question	Answer	Marks	Guidance
5	State $4 x y+2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$, or equivalent, as derivative of $2 x^{2} y$	B1	
	State $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$, or equivalent, as derivative of $x y^{2}$	B1	
	Equate attempted derivative of LHS to zero and set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero (or set numerator equal to zero)	*M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-4 x y}{2 x^{2}-2 x y}$
	Reject $y=0$	B1	Allow from $y^{2}-k x y=0$
	Obtain $y=4 x$	A1	OE from correct numerator. ISW
	Obtain an equation in y (or in x) and solve for y (or for x) in terms of a	DM1	$8 x^{3}-16 x^{3}=a^{3}$ or $\frac{y^{3}}{8}-\frac{y^{3}}{4}=a^{3}$
	Obtain $y=-2 a$	A1	With no errors seen
		7	

Question	Answer	Marks	Guidance
5	Alternative method for question 5		
	Rewrite as $y=\frac{a^{3}}{2 x^{2}-x y}$ and differentiate	M1	Correct use of function of a function and implicit differentiation
	Obtain correct derivative (in any form)	A1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-a^{3}\left(4 x-y-x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)}{\left(2 x^{2}-x y\right)^{2}}$
	set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero (or set numerator equal to zero)	*M1	
	Obtain $4 x-y=0$	A1	
	Confirm $2 x^{2}-x y \neq 0$	B1	$x=0$ and $2 x=y$ both give $a=0$
	Obtain an equation in y (or in x) and solve for y (or for x)	DM1	$8 x^{3}-16 x^{3}=a^{3}$ or $\frac{y^{3}}{8}-\frac{y^{3}}{4}=a^{3}$
	Obtain $y=-2 a$	A1	With no errors seen
		7	

Question	Answer	Marks	Guidance
6	Separate variables correctly to obtain $\int \frac{1}{x+2} \mathrm{~d} x=\int \cot \frac{1}{2} \theta \mathrm{~d} \theta$	B1	Or equivalent integrands. Integral signs SOI
	Obtain term $\ln (x+2)$	B1	Modulus signs not needed.
	Obtain term of the form $k \ln \sin \frac{1}{2} \theta$	M1	
	Obtain term $2 \ln \sin \frac{1}{2} \theta$	A1	
	Use $x=1, \theta=\frac{1}{3} \pi$ to evaluate a constant, or as limits, in an expression containing $p \ln (x+2)$ and $q \ln \left(\sin \frac{1}{2} \theta\right)$	M1	Reach $C=$ an expression or a decimal value
	Obtain correct solution in any form e.g. $\ln (x+2)=2 \ln \sin \frac{1}{2} \theta+\ln 12$	A1	$\ln 12=2.4849 \ldots$. Accept constant to at least 3 s.f. Accept with $\ln 3-2 \ln \frac{1}{2}$
	Remove logarithms and use correct double angle formula	M1	Need correct algebraic process. $\left(\frac{x+2}{12}=\frac{1-\cos \theta}{2}\right)$
	Obtain answer $x=4-6 \cos \theta$	A1	
		8	

Question	Answer	Marks	Guidance
7(a)	Substitute and obtain a correct horizontal equation in x and y in any form	B1	$\begin{aligned} & z z *+\mathrm{i} z-2 z^{*}=0 \Rightarrow \\ & x^{2}+y^{2}+\mathrm{i} x-y-2 x+2 \mathrm{i} y=0 \end{aligned}$ Allow if still includes brackets and/or i^{2}
	Use $\mathrm{i}^{2}=-1$ and equate real and imaginary parts to zero OE	*M1	For their horizontal equation
	Obtain two correct equations e.g. $x^{2}+y^{2}-y-2 x=0$ and $x+2 y=0$	A1	Allow ix $+2 \mathrm{i} y=0$
	Solve for x or for y	DM1	
	Obtain answer $\frac{6}{5}-\frac{3}{5} \mathrm{i}$ and no other	A1	OE, condone $\frac{1}{5}(6-3 i)$
		5	

Question	Answer	Marks	Guidance
7(b)(i)	Show a circle with centre 2 i and radius 2	B1	
	Show horizontal line $y=3-$ in first and second quadrant	B1	
			SC: For clearly labelled axes not in the conventional directions, allow B1 for a fully 'correct' diagram.
		2	
7(b)(ii)	Carry out a complete method for finding the argument. (Not by measuring the sketch)	M1	$(z=\sqrt{3}+3 \mathrm{i})$ Must show working if using 1.7 in place of $\sqrt{3}$.
	Obtain answer $\frac{1}{3} \pi\left(\right.$ or $\left.60^{\circ}\right)$	A1	SC: Allow B2 for 60° with no working
		2	

Question	Answer	Marks	Guidance
8(i)	State or imply the form $\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A=4, B=-1, C=0$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
8(ii)	Integrate and obtain term $2 \ln (2 x-1)$	B1FT	The FT is on $A \cdot \frac{1}{2} A \ln (2 x-1)$
	Integrate and obtain term of the form $k \ln \left(x^{2}+2\right)$	*M1	From $\frac{n x}{x^{2}+2}$
	Obtain term $-\frac{1}{2} \ln \left(x^{2}+2\right)$	A1FT	The FT is on B
	Substitute limits correctly in an integral of the form $a \ln (2 x-1)+b \ln \left(x^{2}+2\right)$, where $a b \neq 0$	DM1	$2 \ln 9(-2 \ln 1)-\frac{1}{2} \ln 27+\frac{1}{2} \ln 3$
	Obtain answer ln 27 after full and correct exact working	A1	ISW
		5	

Question	Answer	Marks	Guidance
9(i)	Commence integration by parts, reaching $a x \sin \frac{1}{3} x-b \int \sin \frac{1}{3} x \mathrm{~d} x$	*M1	
	Obtain $3 x \sin \frac{1}{3} x-3 \int \sin \frac{1}{3} x \mathrm{~d} x$	A1	
	Complete integration and obtain $3 x \sin \frac{1}{3} x+9 \cos \frac{1}{3} x$	A1	
	Substitute limits correctly and equate result to 3 in an integral of the form $p x \sin \frac{1}{3} x+q \cos \frac{1}{3} x$	DM1	$3=3 a \sin \frac{a}{3}+9 \cos \frac{a}{3}(-0)-9$
	Obtain $a=\frac{4-3 \cos \frac{a}{3}}{\sin \frac{a}{3}}$ correctly	A1	With sufficient evidence to show how they reach the given equation
		5	
9(ii)	Calculate values at $a=2.5$ and $a=3$ of a relevant expression or pair of expressions.	M1	$2.5<2.679 \text { and } 3>2.827$ If using 2.679 and 2.827 must be linked explicitly to 2.5 and 3 . Solving $\mathrm{f}(a)=0, \mathrm{f}(2.5)=0.179$. and $\mathrm{f}(3)=-0.173$ or if $\mathrm{f}(a)=a \sin \frac{1}{3} a+3 \cos \frac{1}{3} a-4 \Rightarrow \mathrm{f}(2.5)=-0.13 . ., \mathrm{f}(3)=0.145 \ldots$
	Complete the argument correctly with correct calculated values	A1	Accept values to 1 sf . or better
		2	

Question	Answer	Marks	Guidance
9 (iii)	Use the iterative process $a_{n+1}=a_{n+1} \frac{4-3 \cos \frac{1}{3} a_{n}}{\sin \frac{1}{3} a_{n}}$ correctly at least once	M1	
	Show sufficient iterations to at least 5 d.p. to justify 2.736 to 3d.p., or show a sign change in the interval (2.7355, 2.7365)	A1	
	Obtain final answer 2.736	A1	$\mathbf{3}$

Question	Answer	Marks	Guidance
$10(\mathrm{i})$	Express general point of l in component form e.g. $(1+\lambda, 3-2 \lambda,-2+3 \lambda)$	$\mathbf{B 1}$	
	Substitute in equation of p and solve for λ	$\mathbf{M 1}$	
	Obtain final answer $\frac{5}{3} \mathbf{i}+\frac{5}{3} \mathbf{j}$ from $\lambda=\frac{2}{3}$	$\mathbf{A 1}$	OE Accept $1.67 \mathbf{i}+1.67 \mathbf{j}$ or better
		$\mathbf{3}$	

| Question | Answer | Marks | Guidance |
| :---: | :--- | :--- | :--- | :--- |
| $10($ ii) | Use correct method to evaluate a scalar product of relevant vectors
 e.g. $(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) .(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k})$ | $\mathbf{M 1}$ | |
| | Using the correct process for calculating the moduli, divide the
 scalar product by the product of the moduli and evaluate the inverse
 sine or cosine of the result | $\mathbf{M 1}$ | $\|\sin \theta\|=\frac{9}{14}$ |

Question	Answer	Marks	Guidance
10(iii)	State $a-2 b+3 c=0$ or $2 a+b-3 c=0$	B1	
	Obtain two relevant equations and solve for one ratio, e.g. $a: b$	M1	Could use $2 a+b-3 c=0$ and $\left\{\begin{array}{c} a+3 b-2 c=d \\ \frac{5}{3} a+\frac{5}{3} b=d \end{array}\right.$ i.e. use two points on the line rather than the direction of the line. The second M1 is not scored until they solve for d.
	Obtain $a: b: c=3: 9: 5$	A1	OE
	Substitute a, b, c and a relevant point in the plane equation and evaluate d	M1	Using their calculated normal and a relevant point
	Obtain answer $3 x+9 y+5 z=20$	A1	OE
	Alternative method for question 10(iii)		
	Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \times(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k})$	M1	
	Obtain two correct components	A1	
	Obtain correct answer, e.g. $3 \mathbf{i}+9 \mathbf{j}+5 \mathbf{k}$	A1	
	Use the product and a relevant point to find d	M1	Using their calculated normal and a relevant point
	Obtain answer $3 x+9 y+5 z=20$, or equivalent	A1	OE

Question	Answer	Marks	Guidance
10(iii)	Alternative method for question 10(iii)		
	Attempt to form a 2-parameter equation with relevant vectors	M1	
	State a correct equation e.g. $\mathbf{r}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k})+\mu(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k})$	A1	
	State 3 equations in x, y, z, λ and μ	A1	
	Eliminate λ and μ	M1	
	Obtain answer $3 x+9 y+5 z=2$	A1	OE
		5	

