Question	Answer	Marks	Guidance
$1(\mathrm{i})$	State or imply non-modular inequality $(2 x-7)^{2}<(2 x-9)^{2}$ or corresponding equation or linear equation (with signs of $2 x$ different)	$\mathbf{M 1}$	
	Obtain critical value 4	A1	
	State $x<4$ only	A1	
		$\mathbf{3}$	
	Attempt to find n from $\ln n=$ their critical value from part (i)	M1	
	Obtain or imply $n<\mathrm{e}^{4}$ and hence 54	$\mathbf{2}$	

Question	Answer	Marks	Guidance
2	Expand integrand to obtain $4 \mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}+1$	$\mathbf{B 1}$	
	Integrate to obtain at least two terms of form $k_{1} \mathrm{e}^{4 x}+k_{2} \mathrm{e}^{2 x}+k_{3} x$	$* \mathbf{M 1}$	
	Obtain correct $\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+x$	A1	
	Apply both limits correctly to their integral	DM1	
	Obtain $\mathrm{e}^{8}-3 \mathrm{e}^{4}+2 \mathrm{e}^{2}+1$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
4 4(i)	Substitute $x=2$, equate to zero and attempt solution	M1	
	Obtain $a=4$	A1	
		$\mathbf{2}$	
	Divide by $x-2$ at least as far as the x term	M1	By inspection or use of identity
	Obtain $4 x^{2}+12 x+9$	A1	
	Conclude $(x-2)(2 x+3)^{2}$	A1	Each factor must be simplified to integer form
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4 (iii)	Attempt correct process to solve $\mathrm{e}^{\sqrt{y}}=k$ where $k>0$	M1	For $y=(\ln k)^{2}$
	Obtain 0.48 and no others	A1	AWRT
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	Integrate to obtain form $x^{3}+k_{1} \sin 2 x+k_{2} \cos x$	$* \mathbf{M 1}$	
	Obtain correct $x^{3}+2 \sin 2 x+\cos x$	A1	
	Apply limits correctly and equate to 2	DM1	
	Confirm given result	A1	AG; necessary detail needed
	5(ii)	Consider sign of $a-\sqrt[3]{3-2 \sin 2 a-\cos a}$ or equivalent for 0.5 and 0.75	$\mathbf{4}$

Question	Answer	Marks	Guidance
5(iii)	Use iterative process correctly at least once	M1	Need to see a correct x_{3}, may be implied by $\begin{aligned} & x_{1}=0.5 \text { so } x_{3}=0.65256 \text { or } x_{1}=0.75 \text { so } \\ & x_{3}=0.64897 \mathrm{OE} \end{aligned}$ Must be working with radians
	Obtain final answer 0.651	A1	
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [0.6505, 0.6515]	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	Express equation as $\frac{1}{\cos \alpha \sin \alpha}=7$	B1	OE; May be implied by subsequent work
	Attempt use of identity for $\sin 2 \alpha$ or attempt to obtain a quadratic equation in terms of any one of the following: $\sin ^{2} \alpha, \cos ^{2} \alpha, \cot ^{2} \alpha \text { or } \tan ^{2} \alpha$	M1	From equation of form $\sin 2 \alpha=k$ where $0<k<1$ or from use of correct identities
	Obtain $\sin 2 \alpha=\frac{2}{7}$ or a correct 3 term quadratic equation, equated to zero in any one of the following: $\sin ^{2} \alpha, \cos ^{2} \alpha, \cot ^{2} \alpha \text { or } \tan ^{2} \alpha$	A1	
	Attempt correct process to find at least one correct value of α	M1	
	Obtain 8.3 and 81.7 and no others between 0 and 90	A1	
		5	

Question	Answer	Marks	Guidance
$6(b)$	Simplify left-hand side to obtain $2 \sin \beta \cos 20^{\circ}$	B1	
	Attempt to form equation where $\tan \beta$ is only variable, $\tan \beta \neq 3$	$\mathbf{M 1}$	
	Obtain $\tan \beta=\frac{3}{\cos 20^{\circ}}$	A1	OE
	Obtain $\beta=72.6$ and no others between 0 and 90	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7 (i)	Obtain $-4 y-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ from use of the product rule	B1	
	Differentiate $-2 y^{2}$ to obtain $-4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	
	Obtain $2 x,=0$ with no extra terms	B1	
	Rearrange to obtain expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and substitute $x=-1, y=2$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-4 y}{4 x+4 y}$ OE and hence $-\frac{5}{2}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7(ii)	Equate numerator of derivative to zero to produce equation in x and y	M1	
	Substitute into equation of curve to produce equation in x or y	M1	
	Obtain $-6 y^{2}=1$ or $-\frac{3}{2} x^{2}=1$ OE and conclude	A1	
		3	
7(iii)	Use denominator of derivative equated to zero with equation of curve to produce equation in x	M1	
	Obtain $3 x^{2}=1$ and hence $x= \pm \frac{1}{\sqrt{3}}$	A1	OE
		2	

