Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
1	Divide at least as far as the <i>x</i> term in the quotient	M1	Allow use of $(x^2 + 2)(x^2 + ax + b) + cx + d$
	Obtain at least $x^2 - 3x$	A1	
	Obtain $x^2 - 3x + 3$ and remainder 5	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	State or imply non-modular equation $(4x+5)^2 = (x-7)^2$ or pair of different linear equations	B1	
	Attempt solution of 3-term quadratic equation or pair of linear equations	M1	
	Obtain $\frac{2}{5}$ and -4	A1	SC For $x = -4$ only, from correct work, allow B1
		3	
2(ii)	Apply logarithms and use power law for $2^{y} = k$ where $k > 0$ from (i)	M1	
	Obtain –1.32 only	A1	AWRT
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2019

Question	Answer	Marks	Guidance
3	$\ln y = \ln k + a \ln x$	B1	SOI
	Equate gradient of line to <i>a</i>	M1	
	Obtain $a = -1.39$	A1	OE
	Substitute appropriate values into a correct equation to find $\ln k$	M1	
	Obtain $\ln k = 4.266$ and $k = 71.2$	A1	SC1 for gradient = -1.39 and no other relevant working
	Alternative method for question 3		
	$\ln y = \ln k + a \ln x$	B1	SOI
	$3.96 = \ln k + 0.22a$	M1	For one correct equation
	$2.43 = \ln k + 1.32a$	M1	For a second correct equation and attempt to solve to find one unknown
	Obtain $a = -1.39$	A1	OE
	Obtain $\ln k = 4.266$ and $k = 71.2$	A1	SC1 for gradient = -1.39 and no other relevant working
	Alternative method for question 3		
	$e^{3.96} = k \times 0.22^a$ and $e^{2.43} = k \times 1.32^a$	B1	
	Apply a correct method to obtain <i>a</i>	M1	
	Obtain $a = -1.39$	A1	OE
	Substitute appropriate values into a correct equation to find k	M1	
	Obtain $k = 71.2$	A1	AWRT
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(i)	Use iteration correctly at least once	M1	Must see correct attempt at x_3
	Obtain final answer 1.359	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval [1.3585, 1.3595]	A1	Answer required to exactly 4 sf Must see to at least x_5
		3	
4(ii)	Form correct equation in x (or α)	B1	$x = \frac{x}{\ln 2x}$ OE
	Obtain $\frac{1}{2}$ e	B1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
5	Differentiate using the product rule	*M1	Must have <i>u</i> and <i>v</i> correct in a correct formula with $\frac{du}{dx} = 2$ and $\frac{dv}{dx} = me^{-\frac{1}{2}x}$
	Obtain correct $2e^{-\frac{1}{2}x} - \frac{1}{2}e^{-\frac{1}{2}x}(2x+5)$	A1	OE
	Equate first derivative to zero and solve for <i>x</i>	DM1	Solution must come from linear terms
	Obtain $x = -\frac{1}{2}$ only	A1	
	Obtain $4e^{\frac{1}{4}}$ or exact equivalent only	A1	
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
6(a)	Obtain $\frac{3}{2}\ln x$ or $\frac{3}{2}\ln(2x)$ or $\frac{3}{2}\ln(kx)$	B 1	
	Use subtraction law of logarithms correctly, showing sufficient detail	M1	$\ln 216 - \ln 8 = \ln\left(\frac{216}{8}\right)$
	Use power law of logarithms correctly	M1	$n\ln(kx) = \ln(kx)^n$
	Confirm ln 27 with sufficient working and no incorrect working	A1	AG
		4	
6(b)	Use appropriate identity to express integrand in form $k_1 + k_2 \cos 3x$	*M1	$k_1 \neq 0$. Allow $2 \times \frac{3}{2}x$ for $3x$
	Obtain correct $2-2\cos 3x$	A1	
	Integrate to obtain form $k_3 x + k_4 \sin 3x$	DM1	
	Obtain correct $2x - \frac{2}{3}\sin 3x$	A1	
	Use limits to obtain $\frac{1}{3}\pi - \frac{2}{3}$ or exact equivalent	A1	
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

9709 w19 ms 22

Question	Answer	Marks	Guidance
7(i)	Obtain $\frac{dx}{d\theta} = 6\cos 2\theta$	B1	
	Obtain $\frac{dy}{d\theta} = 4 \sec^2 2\theta$	B 1	
	Divide $\frac{dy}{d\theta}$ by $\frac{dx}{d\theta}$ with θ equated to $\frac{1}{6}\pi$	M1	
	Obtain $\frac{16}{3}$ or exact equivalent	A1	Allow FT on A1 if $\frac{dx}{d\theta} = 3\cos 2\theta$ and $\frac{dy}{d\theta} = 2\sec^2 2\theta$
		4	
7(ii)	Equate expression for $\frac{dy}{dx}$ to 2 with only one trigonometry ratio used	*M1	Either $\cos 2\theta$ or $\sec 2\theta$
	Obtain $\cos^3 2\theta = \frac{1}{3}$ or $\sec^3 = 3$	A1	
	Attempt correct steps to find a value of θ from $\cos^3 2\theta = m$, 0 < m < 1	DM1	
	Obtain $\theta = 0.402$ and no others within the range	A1	AWRT SC: Allow FT if $\frac{dx}{d\theta} = 3\cos 2\theta$ and $\frac{dy}{d\theta} = 2\sec^2 2\theta$
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
8(i)	State $R = 1.3$ or $\frac{10}{3}$	B1	Not $\sqrt{1.69}$
	Use appropriate trigonometry to find α	M1	AWRT ±1.18 rads, AWRT ±0.391 rads, AWRT ±67.4°, AWRT ±22.6°
	Obtain 67.38 with no errors seen	A1	AWRT
		3	
8(ii)	Carry out correct method to find one value of θ between 0 and 360	M1	
	Obtain 240.6 (or 344.6)	A1	
	Carry out correct method to find second value of θ between 0 and 360	M1	Must be using either degrees throughout or radians throughout for M marks
	Obtain 344.6 (or 240.6)	A1	
		4	
8(iii)	Recognise expression as $[3 - 2R\cos(\theta + \alpha)]^2$	M1	
	Obtain $[3-2 \times (-1.3)]^2$ and hence 31.36 or 31.4	A1	
	Obtain $[3-2\times1.3]^2$ and hence 0.16	A1	
		3	