Question	Answer	Marks	Guidance
1(i)	$1+6 y+15 y^{2}$	B1	CAO
		1	
1(ii)	$1+6\left(p x-2 x^{2}\right)+15\left(p x-2 x^{2}\right)^{2}$	M1	SOI. Allow $6 \mathrm{C} 1 \times 1^{5}\left(p x-2 x^{2}\right), 6 \mathrm{C} 2 \times 1^{4}\left(p x-2 x^{2}\right)^{2}$
	$\left(15 p^{2}-12\right)\left(x^{2}\right)=48\left(x^{2}\right)$	A1	1 term from each bracket and equate to 48
	$p=2$	A1	SC: A1 $p=4$ from $15 p-12=48$
		3	

Question	Answer	Marks	Guidance
2	$(y=)\left[(x-3)^{2}\right][-2]$	$\begin{gathered} \text { *B1 } \\ \text { DB1 } \end{gathered}$	DB1 dependent on 3 in 1st bracket
	$x-3=(\pm) \sqrt{y+2}$ or $y-3=(\pm) \sqrt{x+2}$	M1	Correct order of operations
	$\left(\mathrm{g}^{-1}(x)\right)=3+\sqrt{x+2}$	A1	Must be in terms of x
	Domain (of g^{-1}) is $(x)>-1$	B1	Allow $(-1, \infty)$. Do not allow $y>-1$ or $\mathrm{g}(x)>-1$ or $\mathrm{g}^{-1}(x)>-1$
		5	

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 x-8$	B1	
	Set to zero (SOI) and solve	M1	
	(Min) $a=-2,($ Max $) ~ b=4 / 3 .-$ in terms of a and b.	$\begin{aligned} & \mathbf{A 1} \\ & \mathbf{A 1} \end{aligned}$	Accept $a \geqslant-2, \quad b \leqslant \frac{4}{3}$ SC: A1 for $a>-2, \quad b<\frac{4}{3}$ or for $-2<x<\frac{4}{3}$
		4	

Question	Answer	Marks	Guidance
4(i)	Angle $C A O=\frac{\pi}{3}$	B1	
		1	
4(ii)	$(\text { Sector } A O C)=\frac{1}{2} r^{2} \times \text { their } \frac{\pi}{3}$	M1	SOI
	$(\triangle A B C)=\frac{1}{2}(r)(2 r) \sin \left(\text { their } \frac{\pi}{3}\right) \text { or } \frac{1}{2}(2 r)(r) \frac{\sqrt{3}}{2} \text { or } \frac{1}{2}(r)(r) \sqrt{3}$	M1	For M1M1, their $\frac{\pi}{3}$ must be of the form $k \pi$ where $0<k<1 / 2$
	$(\triangle A B C)=\frac{1}{2}(r)(2 r) \sin \left(\frac{\pi}{3}\right) \text { or } \frac{1}{2}(2 r)(r) \frac{\sqrt{3}}{2} \text { or } \frac{1}{2}(r)(r) \sqrt{3}$	A1	All correct
	$r^{2}\left(\frac{\sqrt{3}}{2}\right)-\frac{1}{2} r^{2}\left(\frac{\pi}{3}\right)$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	$S=28 x^{2}, V=8 x^{3}$	B1B1	SOI
	$7 V^{\frac{2}{3}}=7 \times 4 x^{2}=S$	B1	AG, WWW
		3	
5(ii)	$\left(\frac{\mathrm{d} S}{\mathrm{~d} V}\right)=\frac{14 V^{-\frac{1}{3}}}{3}=\frac{14}{30}$ SOI when $V=1000$	$\begin{array}{r} \text { *M1 } \\ \mathbf{A 1} \end{array}$	Attempt to differentiate For M mark $\left(\frac{\mathrm{d} S}{\mathrm{~d} V}\right)$ to be of form $k V^{-\frac{1}{3}}$
	$\left(\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} S}{\mathrm{~d} t} \times \frac{\mathrm{d} V}{\mathrm{~d} S}\right)$ OE used with $\frac{\mathrm{d} S}{\mathrm{~d} t}=2$ and $\frac{1}{\text { their } \frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
	Alternative method for question 5(ii)		
	$V=\frac{S^{\frac{3}{2}}}{7 \sqrt{7}} \rightarrow\left(\frac{\mathrm{~d} V}{\mathrm{~d} S}\right)=\frac{3}{2} \times S^{\frac{1}{2}} \times \frac{1}{7 \sqrt{7}}=\frac{30}{14}$ SOI when $S=700$	$\begin{array}{r} \text { *M1 } \\ \mathbf{A 1} \end{array}$	Attempt to differentiate For M mark $\left(\frac{\mathrm{d} V}{\mathrm{~d} S}\right)$ to be of form $k S^{\frac{1}{2}}$
	$\left(\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} S}{\mathrm{~d} t} \times \frac{\mathrm{d} V}{\mathrm{~d} S}\right)$ OE used with $\frac{\mathrm{d} S}{\mathrm{~d} t}=2$ and $\frac{1}{\text { their } \frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE

Question	Answer	Marks	Guidance
5(ii)	Alternative method for question 5(ii)		
	Attempt to find either $\frac{\mathrm{d} V}{\mathrm{~d} x}$ or $\left(\frac{\mathrm{d} S}{\mathrm{~d} x}\right.$ and $\left.\frac{\mathrm{d} V}{\mathrm{~d} S}\right)$ together with either $\frac{\mathrm{d} x}{\mathrm{~d} t}$ or x	*M1	
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=24 x^{2}$ or $\left(\frac{\mathrm{d} S}{\mathrm{~d} x}=56 x\right.$ and $\left.\frac{\mathrm{d} V}{\mathrm{~d} S}=\frac{3 x}{7}\right), \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{140}$ or $x=5(\mathrm{~A} 1)$	A1	
	Correct method for $\frac{\mathrm{d} V}{\mathrm{~d} t}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
		4	

Question	Answer	Marks	Guidance
6(i)	$3 k x-2 k=x^{2}-k x+2 \rightarrow x^{2}-4 k x+2 k+2(=0)$	B1	$k x$ terms combined correctly-implied by correct $b^{2}-4 a c$
	Attempt to find $b^{2}-4 a c$	M1	Form a quadratic equation in k
	1 and $-\frac{1}{2}$	A1	SOI
	$k>1, k<-\frac{1}{2}$	A1	Allow $x>1, x<-1 / 2$
		4	
6(ii)	$y=3 x-2, \quad y=-\frac{3}{2} x+1$	M1	Use of their k values (twice) in $y=3 k x-2 k$
	$3 x-2=-\frac{3}{2} x+1$ OR $y+2=2-2 y$	M1	Equate their tangent equations OR substitute $y=0$ into both lines
	$x=\frac{2}{3}, \rightarrow y=0$ in one or both lines	A1	Substitute $x=\frac{2}{3}$ in one or both lines
		3	

Question	Answer	Marks	Guidance
7(i)	$3 \cos ^{4} \theta+4\left(1-\cos ^{2} \theta\right)-3(=0)$	M1	Use $s^{2}=1-c^{2}$
	$3 x^{2}+4(1-x)-3(=0) \rightarrow 3 x^{2}-4 x+1(=0)$	A1	AG
		2	
7(ii)	Attempt to solve for x	M1	Expect $x=1,1 / 3$
	$\cos \theta=(\pm) 1,(\pm) 0.5774$	A1	Accept $(\pm)\left(\frac{1}{\sqrt{3}}\right)$ SOI
	$(\theta=) 0^{\circ}, 180^{\circ}, 54.7^{\circ}, 125.3^{\circ}$	A3,2,1,0	A2,1,0 if more than 4 solutions in range
		5	

Question	Answer	Marks	Guidance
$8(\mathrm{i})$	$(2 x-1)^{\frac{1}{2}}<2$ or $3(2 x-1)^{\frac{1}{2}}<6$	M1	SOI
	$2 x-1<4$	A1	SOI
	$\frac{1}{2}<x<\frac{5}{2}$	A1 A1	Allow 2 separate statements
	$8($ ii)	$\mathrm{f}(x)=\left[3(2 x-1)^{3 / 2} \div\left(\frac{3}{2}\right) \div(2)\right][-6 x](+\mathrm{c})$	B1 B1

Question	Answer	Marks	Guidance
9(i)	$\frac{5 k-6}{3 k}=\frac{6 k-4}{5 k-6} \rightarrow(5 k-6)^{2}=3 k(6 k-4)$	M1	OR any valid relationship
	$25 k^{2}-60 k+36=18 k^{2}-12 k \rightarrow 7 k^{2}-48 k+36$	A1	AG
		2	
9(ii)	$k=\frac{6}{7}, 6$	B1B1	Allow $0.857(1)$ for $\frac{6}{7}$
	When $k=\frac{6}{7}, r=-\frac{2}{3}$	B1	Must be exact
	When $k=6, r=\frac{4}{3}$	B1	
		4	
9 (iii)	Use of $S_{\infty}=\frac{a}{1-r}$ with $r=$ their $-\frac{2}{3}$ and $a=3 \times$ their $\frac{6}{7}$	M1	Provided $0<\mid$ their $-2 / 3 \mid<1$
	$\frac{18}{7} \div\left(1+\frac{2}{3}\right)=\frac{54}{35}$ or 1.54	A1	FT if $0.857(1)$ has been used in part (ii).
		2	

Question	Answer	Marks	Guidance
10(i)	$\mathbf{A X}=\left(\begin{array}{l}6 \\ 2 \\ 3\end{array}\right)$, and one of $\mathbf{A B}=\left(\begin{array}{c}18 \\ 6 \\ 9\end{array}\right), \mathbf{X B}=\left(\begin{array}{c}12 \\ 4 \\ 6\end{array}\right), \mathbf{B} \mathbf{X}=\left(\begin{array}{c}-12 \\ -4 \\ -6\end{array}\right)$	B1B1	
	State $\mathbf{A B}=3 \mathbf{A X}\left(\right.$ or $\mathbf{X B}=2 \mathbf{A X}$ or $\mathbf{A B}=\frac{3}{2} \mathbf{X B}$ etc $)$ hence straight line OR $\frac{\mathbf{A X} \cdot \mathbf{A B}}{\|\mathbf{A X}\|\|\mathbf{A B}\|}=1(\rightarrow \theta=0) \text { or } \frac{\mathbf{A X} \cdot \mathbf{B X}}{\|\mathbf{A X}\|\|\mathbf{B X}\|}=-1(\rightarrow \theta=180)$ hence straight line	B1	WWW A conclusion (i.e. a straight line) is required.
		3	
10(ii)	$\mathbf{C X}=\left(\begin{array}{c}-3 \\ 6 \\ 2\end{array}\right)$	B1	
	CX.AX $=-18+12+6$	M1	
	$=0$ (hence $C X$ is perpendicular to $A X$)	A1	
		3	
10(iii)	$\|\mathbf{C X}\|=\sqrt{3^{2}+6^{2}+2^{2}},\|\mathbf{A B}\|=\sqrt{18^{2}+6^{2}+9^{2}}$ Both attempted	M1	
	Area $\triangle A B C=\frac{1}{2} \times$ their $21 \times$ their $7=73 \frac{1}{2}$	M1A1	Accept answers which round to 73.5
		3	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2(x-1)^{-3}$	B1	
	When $x=2, m=-2 \rightarrow$ gradient of normal $=-\frac{1}{m}$	M1	m must come from differentiation
	Equation of normal is $y-3=1 / 2(x-2) \rightarrow y=1 / 2 x+2$	A1	AG Through $(2,3)$ with gradient $-\frac{1}{m}$. Simplify to AG
		3	

Question	Answer	Marks	Guidance
11(ii)	$(\pi) \int y_{1}{ }^{2}(\mathrm{~d} x),(\pi) \int y_{2}{ }^{2}(\mathrm{~d} x)$	*M1	Attempt to integrate y^{2} for at least one of the functions
	$\begin{aligned} & (\pi) \int\left(\frac{1}{2} x+2\right)^{2} \text { or }\left(\frac{1}{4} x^{2}+2 x+4\right) \\ & (\pi) \int\left((x-1)^{-4}+4(x-1)^{-2}+4\right) \end{aligned}$	A1A1	A1 for $\left(\frac{1}{2} x+2\right)^{2}$ depends on an attempt to integrate this form later
	$\begin{aligned} & (\pi)\left[\frac{2}{3}\left(\frac{1}{2} x+2\right)^{3} \text { or } \frac{1}{12} x^{3}+x^{2}+4 x\right] \\ & (\pi)\left[\frac{(x-1)^{-3}}{-3}+\frac{4(x-1)^{-1}}{-1}+4 x\right] \end{aligned}$	A1A1	Must have at least 2 terms correct for each integral
	(π) $\left\{18-\frac{125}{12}\right.$ or $\left.\frac{2}{3}+4+8-\left(\frac{1}{12}+1+4\right)\right\}\left\{\frac{-1}{24}-2+12-\left(\frac{-1}{3}-4+8\right)\right\}$	DM1	Apply limits to at least 1 integrated expansion
	Attempt to add 2 volume integrals (or 1 volume integral + frustum) $\pi\left\{7 \frac{7}{12}+6 \frac{7}{24}\right\}$	DM1	
	$13 \frac{7}{8} \pi \text { or } \frac{111}{8} \pi \text { or } 13.9 \pi \text { or } 43.6$	A1	$\frac{2}{3}+4+8-\left(\frac{1}{12}+1+4\right) \frac{-1}{24}-2+12-\left(\frac{-1}{3}-4+8\right)$
		8	

