Question	Answer	Marks	Guidance
1	$\mathrm{e}^{-2.3}\left(\frac{2.3^{2}}{2}+\frac{2.3^{3}}{3!}+\frac{2.3^{4}}{4!}\right)$	M2	M1 for one term wrong or one end error or $1-\mathrm{P}(2,3,4)$
	$=0.585(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$z=1.96$	B1	seen
	$330.1 \pm z \times \frac{4.8}{\sqrt{180}}$	M1	Must be of correct form. Any z
	$=329.4$ to $330.8(1 \mathrm{dp})$	A1	Must be to 1 dp. Must be an interval.
		$\mathbf{3}$	
	Yes, because vol of all cans not stated to be normal	B1	Or Yes, population not stated to be normal
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3	$\mathrm{E}(T)=2 \times 250+5 \times 160(=1300)$	B1	
	$\operatorname{Var}(T)=2 \times 10+5 \times 9(=65)$	B1	
	$\frac{1310-1300{ }^{\prime}}{\sqrt{655^{\prime}}} \quad(=1.240)$	M1	Standardise using their values (must come from a combination attempt). Ignore cc
	$1-\phi\left({ }^{\prime} 1.240\right.$ '	M1	Correct area consistent with their working
	$=0.1075$	A1	Allow 0.107 to 0.108 (no errors seen)
		5	

Question	Answer	Marks	Guidance
4(i)	$\int_{0}^{a} \frac{k}{(x+1)^{2}} \mathrm{~d} x=1$	M1	Any attempt integ $\mathrm{f}(x)$ and $=1$. Ignore limits
	$\begin{aligned} & -\left[\frac{k}{(x+1)}\right]_{0}^{a}=1 \\ & -k\left(\frac{1}{a+1}-1\right)=1 \end{aligned}$	M1	Attempt subst correct limits into correct integral
	$k \times \frac{a}{a+1}=1$ and $k=\frac{a+1}{a} \quad \mathbf{A G}$	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
4(ii)	Max time allowed by model (for runners to finish)	B1	Allow: All runners finish in time a or less or Longest time (taken by any runner) oe
		1	
4(iii)	$\frac{a+1}{a} \int_{0}^{0.5} \frac{1}{(x+1)^{2}} \mathrm{~d} x=\frac{3}{4}$	M1	Attempt integ $\mathrm{f}(x)$ and $=\frac{3}{4}$; ignore limits oe. Condone missing / incorrect k
	$\begin{aligned} & -\frac{a+1}{a}\left[\frac{1}{(x+1)}\right]_{0}^{0.5}=\frac{3}{4} \\ & -\frac{a+1}{a}\left(\frac{2}{3}-1\right)=\frac{3}{4} \end{aligned}$	M1	Attempt subst correct limits into correct integral. Condone missing / incorrect k
	$a=0.8 \mathrm{oe}$	A1	
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\hat{\mu}=\frac{126}{70}$ or $\frac{9}{5}$ or 1.8 oe	B1	
	$\Sigma x^{2} f=286$	B1	Seen or implied
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{70}{69}\left(\frac{\Sigma x^{2} f}{70}-'^{\prime} 1.8^{\prime 2}\right)$	M1	oe attempted
	$=0.858$ or $296 / 345$	$\mathbf{A 1}$	Note: Final answer for var 0.846 (biased) and no working implies B1 for 286
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=1.9 \\ & \mathrm{H}_{1}: \mu<1.9 \end{aligned}$	B1	Or 'pop mean'; not just 'mean'
	$\frac{1.8-1.9}{\sqrt{\frac{0.858^{\prime}}{10}}}$	M1	Standardise with their values from (i). Must have sqr 70. No SD / Var mix
	$=-0.903$	A1	Accept \pm
	$0.903<1.645$	M1	comp 1.645 allow comp 1.96 if $\mathrm{H}_{1}: \mu \neq 1.9$ or comp $1-\phi\left({ }^{\prime} 0.903 '\right)=0.182$ or 0.183 with 0.05 (or 0.025 if $\mathrm{H}_{1}: \mu \neq 1.9$)
	No evidence that mean no courts in S is less than in N	A1ft	No contradictions. ft their 0.903 , but not comp 1.96 i.e. no ft for a 2 tail test Accept cv method: $\mathrm{cv}=1.718 \mathrm{M} 1 \mathrm{~A} 11.718<1.8 \mathrm{M} 1$ conclusion A1 (cv centred on 1.8 gives 1.982 M 1 A 1 and M 1 for $1.982>1.9 \mathrm{~A} 1$ conclusion)
		5	
5(iii)	Type II because H_{0} was not rejected	B1ft	ft their conclusion, i.e. if H_{0} rejected, 'Type I because H_{0} rejected' B1 Answer must be consistent with their conclusion. No conclusion in (ii) will score B0
		1	

Question	Answer	Marks	Guidance
6 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.15 \\ & \mathrm{H}_{1}: p<0.15 \\ & (\mathrm{~N}(60 \times 0.15,60 \times 0.15 \times 0.85)) \\ & =\mathrm{N}(9,7.65) \end{aligned}$	B1	Accept $\begin{aligned} & \mathrm{H}_{0}: \mu=9 \\ & \mathrm{H}_{1}: \mu<9 \end{aligned}$ Use of Normal approximation: $\begin{aligned} & \left(\mathrm{N}\left(0.15, \frac{0.15 \times 0.85}{60}\right)\right) \\ & =\mathrm{N}(0.15,0.002125) \end{aligned}$
	$\frac{6.5{ }^{\prime} 9{ }^{\prime}}{\sqrt{77.65 '}}$	M1	For standardising (or $\frac{\frac{6}{60}+\frac{0.5}{60}-^{\prime} 0.15^{\prime}}{\sqrt{0.002125^{\prime}}}=-0.904$) Allow wrong or no cc
	$=-0.904$	A1	Accept \pm
	${ }^{\prime} 0.904{ }^{\prime}<1.282$	M1	Valid comparison of z values or $\phi\left({ }^{\prime}-0.904^{\prime}\right)=0.183>0.1$ ft their 0.904
	No evidence train late less often	A1ft	Use of $\operatorname{Bin}(60,0.15)$ to give $\operatorname{Pr}(<=6)=0.1848 \mathrm{M} 1 \mathrm{~A} 1$ Valid comparison with 0.1 M 1 Conclusion A1ft
		5	
6(ii)	$0.1+z \times \sqrt{\frac{0.1 \times 0.9}{60}}=0.150$	M1	For $\sqrt{ }(0.1 \times 0.9 / 60)$ seen
		M1	for $0.1+z \times \ldots=0.150$ or $2 \mathrm{z} \ldots=0.1$
	$z=1.291$	A1	
	$\phi\left({ }^{\prime} 1.291\right.$ ') (= $\left.=0.90(16)\right)$	M1	for correct method to find α
	$\alpha=80$	A1ft	ft their z. Must be a +ve non-zero integer <100
		5	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{e}^{-5.6} \times \frac{5.6{ }^{3}}{3!}$	M1	Allow any λ
	$=0.108(3 \mathrm{sf})$	A1	
		2	
7(ii)	$\begin{aligned} & \mathrm{P}(X=2 \& Y=1)=\mathrm{e}^{-2.1} \times \frac{2.1^{2}}{2} \times \mathrm{e}^{-3.5} \times 3.5 \\ & (0.2700 \times 0.10569=0.028538) \end{aligned}$	M1	
	$\begin{aligned} & \frac{\mathrm{P}(X=2 \& Y=1)}{\mathrm{P}(X+Y=3)} \text { attempted } \\ & =\frac{0.028538^{\prime}}{\mathrm{O}^{\prime} .108234} \end{aligned}$	M1	For attempt at fraction with their (i) as denominator or $\frac{2.1^{2}}{2} \times 3.5 \div \frac{5.6^{3}}{3} \mathrm{M} 2$
	$=0.264(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$\operatorname{Var}(X)=2.1$	B1	soi
	$\bar{X} \sim \mathrm{~N}\left(2.1, \frac{2.1}{100}\right)$ or $\mathrm{N}(210,210)$	B1	soi B1 for $\mathrm{N}(2.1, \ldots)$
		B1	B1 for $\frac{2.1}{100}$ oe Standardise with their values. Allow with or without cc or with incorrect cc
	$\frac{2.2-2.1}{\frac{\sqrt{2.1}}{\sqrt{100}}} \text { oe }(220-210) / \sqrt{ } 210(=0.690)$	M1	or $\frac{2.2+0.5 \div 100-2.1}{\frac{\sqrt{1.1}}{\sqrt{100}}}$ or $\left.(220.5-210) / \sqrt{ } 210\right)(=0.725)$ no mixed methods
	$1-\phi\left({ }^{\prime} 0.690\right.$ ' $)$	M1	Correct area consistent with their working or $1-\phi\left({ }^{(0.725}\right.$ ')
	$=0.245(3 \mathrm{sf})$	A1	$=0.234(3 \mathrm{sf})$
		6	

