Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
1	$e^{-2.3}\left(\frac{2.3^2}{2} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!}\right)$	M2	M1 for one term wrong or one end error or $1 - P(2, 3, 4)$
	= 0.585 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	<i>z</i> = 1.96	B1	seen
	$330.1 \pm z \times \frac{4.8}{\sqrt{180}}$	M1	Must be of correct form. Any z
	= 329.4 to 330.8 (1 dp)	A1	Must be to 1 dp. Must be an interval.
		3	
2(ii)	Yes, because vol of all cans not stated to be normal	B1	Or Yes, population not stated to be normal
		1	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
3	$E(T) = 2 \times 250 + 5 \times 160 \ (= 1300)$	B1	
	$Var(T) = 2 \times 10 + 5 \times 9 \ (= 65)$	B1	
	$\frac{1310-1300'}{\sqrt{65'}}$ (= 1.240)	M1	Standardise using their values (must come from a combination attempt). Ignore cc
	1 - \phi(`1.240')	M1	Correct area consistent with their working
	= 0.1075	A1	Allow 0.107 to 0.108 (no errors seen)
		5	

Question	Answer	Marks	Guidance
4(i)	$\int_0^a \frac{k}{(x+1)^2} \mathrm{d}x = 1$	M1	Any attempt integ $f(x)$ and $= 1$. Ignore limits
	$-\left[\frac{k}{(x+1)}\right]_{0}^{a} = 1$ $-k(\frac{1}{a+1}-1) = 1$	M1	Attempt subst correct limits into correct integral
	$-k(\frac{1}{a+1}-1) = 1$		
	$k \times \frac{a}{a+1} = 1$ and $k = \frac{a+1}{a}$ AG	A1	No errors seen
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(ii)	Max time allowed by model (for runners to finish)	B1	Allow: All runners finish in time <i>a</i> or less or Longest time (taken by any runner) oe
		1	
4(iii)	$\frac{a+1}{a} \int_{0}^{0.5} \frac{1}{(x+1)^2} \mathrm{d}x = \frac{3}{4}$	M1	Attempt integ $f(x)$ and $=\frac{3}{4}$; ignore limits oe. Condone missing / incorrect k
	$-\frac{a+1}{a} \left[\frac{1}{(x+1)} \right]_{0}^{0.5} = \frac{3}{4}$ $-\frac{a+1}{a} \left(\frac{2}{3} - 1 \right) = \frac{3}{4}$	M1	Attempt subst correct limits into correct integral. Condone missing / incorrect k
	a = 0.8 oe	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$\hat{\mu} = \frac{126}{70}$ or $\frac{9}{5}$ or 1.8 oe	B1	
	$\Sigma x^2 f = 286$	B1	Seen or implied
	Est(σ^2) = $\frac{70}{69} (\frac{\Sigma x^2 f}{70} - '1.8'^2)$	M1	oe attempted
	= 0.858 or 296 / 345	A1	Note: Final answer for var 0.846 (biased) and no working implies B1 for 286
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2018

9709 w18 ms 72

Question	Answer	Marks	Guidance
5(ii)	H ₀ : $\mu = 1.9$ H ₁ : $\mu < 1.9$	B1	Or 'pop mean'; not just 'mean'
	$\frac{1.8-1.9}{\sqrt{\frac{10.858^{\circ}}{70}}}$	M1	Standardise with their values from (i). Must have sqr 70. No SD / Var mix
	= -0.903	A1	Accept ±
	0.903 < 1.645	M1	comp 1.645 allow comp 1.96 if H ₁ : $\mu \neq 1.9$ or comp 1 – $\phi(`0.903')=0.182$ or 0.183 with 0.05 (or 0.025 if H ₁ : $\mu \neq 1.9$)
	No evidence that mean no courts in S is less than in N	A1ft	No contradictions. ft their 0.903, but not comp 1.96 i.e. no ft for a 2 tail test Accept cv method: cv = 1.718 M1A1 1.718 < 1.8 M1 conclusion A1 (cv centred on 1.8 gives 1.982 M1A1 and M1 for 1.982 > 1.9 A1 conclusion)
		5	
5(iii)	Type II because H ₀ was not rejected	B1ft	ft their conclusion, i.e. if H_0 rejected, 'Type I because H_0 rejected' B1 Answer must be consistent with their conclusion. No conclusion in (ii) will score B0
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
6(i)	$H_{0}: p = 0.15$ $H_{1}: p < 0.15$ (N(60 × 0.15, 60 × 0.15 × 0.85)) = N(9, 7.65)	B1	Accept H ₀ : $\mu = 9$ H ₁ : $\mu < 9$ Use of Normal approximation: $(N(0.15, \frac{0.15 \times 0.85}{60}))$ = N(0.15, 0.002125)
	$\frac{6.5-'9'}{\sqrt{7.65'}}$	M1	For standardising (or $\frac{\frac{6}{60} + \frac{0.5}{60} + 0.15'}{\sqrt{0.002125'}} = -0.904$) Allow wrong or no cc
	=-0.904	A1	Accept ±
	`0.904' < 1.282	M1	Valid comparison of z values or $\phi(-0.904') = 0.183 > 0.1$ ft their 0.904
	No evidence train late less often	A1ft	Use of Bin (60,0.15) to give Pr ($\leq = 6$) = 0.1848 M1A1 Valid comparison with 0.1 M1 Conclusion A1ft
		5	
6(ii)	$0.1 + z \times \sqrt{\frac{0.1 \times 0.9}{60}} = 0.150$	M1	For $\sqrt{(0.1 \times 0.9 / 60)}$ seen
		M1	for $0.1 + z \times = 0.150$ or $2z = 0.1$
	<i>z</i> = 1.291	A1	
	φ('1.291') (= 0.90(16))	M1	for correct method to find α
	$\alpha = 80$	A1ft	ft their <i>z</i> . Must be a +ve non-zero integer < 100
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

<u>9709_w18_ms_</u>72

Question	Answer	Marks	Guidance
7(i)	$e^{-5.6} \times \frac{5.6^3}{3!}$	M1	Allow any λ
	= 0.108 (3 sf)	A1	
		2	
7(ii)	P(X=2 & Y=1) = $e^{-2.1} \times \frac{2.1^2}{2} \times e^{-3.5} \times 3.5$ (0.2700 × 0.10569 = 0.028538)	M1	
	$\frac{\frac{P(X = 2 \& Y = 1)}{P(X + Y = 3)}}{\frac{0.028538'}{0.108234}}$ attempted	M1	For attempt at fraction with their (i) as denominator or $\frac{2.1^2}{2} \times 3.5 \div \frac{5.6^3}{3}$ M2
	= 0.264 (3 sf)	A1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
7(iii)	$\operatorname{Var}(X) = 2.1$	B1	soi
	$\overline{X} \sim N(2.1, \frac{2.1}{100})$ or N(210,210)	B1	soi B1 for N(2.1,)
		B1	B1 for $\frac{2.1}{100}$ oe Standardise with their values. Allow with or without cc or with incorrect cc
	$\frac{\frac{2.2-2.1}{\sqrt{2.1}}}{\sqrt{100}} \text{ oe } (220-210) / \sqrt{210} \ (=0.690)$	M1	or $\frac{2.2+0.5+100-2.1}{\sqrt[3]{210}}$ or $(220.5-210)/\sqrt{210}$ (= 0.725) no mixed methods
	1 - φ('0.690')	M1	Correct area consistent with their working or $1 - \phi(`0.725')$
	= 0.245 (3 sf)	A1	= 0.234 (3 sf)
		6	