Question	Answer	Marks	Guidance
1(i)	$\frac{11!}{4!4!2!}$	M1	$\frac{11!}{4!\times k}$ or $\frac{11!}{2!\times k}, k$ a positive integer
	$=34650$	A1	Correct final answer
		2	
1(ii)	Method 1		
	$\mathrm{P}(\mathrm{SS})=\frac{4}{11} \times \frac{3}{10}=\frac{12}{110}(=0.10911)$	B1	One of $\mathrm{P}(\mathrm{SS}), \mathrm{P}(\mathrm{PP})$ or $\mathrm{P}(\mathrm{II})$ correct, allow unsimplified
	$\begin{aligned} & \mathrm{P}(\mathrm{PP})=\frac{2}{11} \times \frac{1}{10}=\frac{2}{110}(=0.01818) \\ & \mathrm{P}(\mathrm{II})=\frac{4}{11} \times \frac{3}{10}=\frac{12}{110}(=0.10911) \frac{4}{11} \times \frac{3}{10} \end{aligned}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b}+\frac{2}{11} \times \frac{c}{b}+\frac{4}{11} \times \frac{a}{b}$ where $a=4$ or $3, b=11$ or $10, c=2$ or 1)
	$\text { Total }=\frac{26}{110}=\frac{13}{55} \text { oe }(0.236)$	A1	Correct final answer
	Method 2		
	Total number of selections $={ }^{11} \mathrm{C}_{2}=55$ Selections with $2 \mathrm{Ps}=1$	B1	Seen as the denominator of fraction (no extra terms) allow unsimplified
	Selections with $2 \mathrm{Ss}={ }^{4} \mathrm{C}_{2}=6$ Selections with 2 Is $={ }^{4} \mathrm{C}_{2}=6$,	M1	Sum of 3 appropriate identifiable scenarios (either by labelling or values, condone use of permutations. May be implied by 2,12,12)
	Total selections with 2 letters the same $=13$ Probability of 2 letters the same $=\frac{13}{55}$ oe (0.236)	A1	Correct final answer, without use of permutations
		3	

Question	Answer					Marks	Guidance
2(i)	$\begin{aligned} & \text { median }=0.225 ; \\ & \mathrm{LQ}=0.215: \mathrm{UQ}=0.236 \end{aligned}$					B1	Correct median $\left(\mathrm{Q}_{2}\right)$
	$\mathrm{IQR}=0.236-0.215$					M1	$0.232<\mathrm{UQ}\left(\mathrm{Q}_{3}\right)<0.238-0.204<\mathrm{LQ}\left(\mathrm{Q}_{1}\right)<0.219$
	$=0.021$					A1	www Omission of all decimal points MR-1 If M0 awarded $\mathbf{S C B 1}$ for both $\mathrm{LQ}=0.215$: $\mathrm{UQ}=0.236$ seen
						3	
2(ii)						B1	Linear scale between 0.20 to 0.26 (condone omission of 0.26) axis labelled (time and seconds), at least one box plot attempted, no lines through boxes, whiskers not at corner of boxes
						B1 ft	Labelled correct graph for A , (ft their median/quartiles), condone lines through boxes, whiskers at corner of boxes
	SCB1 if both 'correct' Penalty MR-1 if graphs plotted on separate axes unless both scales align exactly.						
						3	

Question	Answer	Marks	Guidance
3(i)	Method 1		
	$\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(5)={ }^{5} \mathrm{C}_{3} 0.75^{3} \times 0.25^{2}+$	M1	One binomial term ${ }^{5} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{5-x}, x \neq 0$ or 5 , any p
	${ }^{5} \mathrm{C}_{4} 0.75^{4} \times 0.25^{1}+{ }^{5} \mathrm{C}_{5} 0.75^{5} \times 0.25^{0}$	M1	Correct unsimplified expression
	$\begin{aligned} =0.26367+ & 0.39551+0.23730 \\ & =0.896(459 / 512) \end{aligned}$	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	Method 2		
	$1-\mathrm{P}(0)-\mathrm{P}(1)-\mathrm{P}(2)=1-{ }^{5} \mathrm{C}_{0} 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${ }^{5} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{5-x}, x \neq 0$ or 5 , any p
	$-{ }^{5} \mathrm{C}_{1} 0.75{ }^{1} \times 0.25^{4}-{ }^{5} \mathrm{C}_{2} 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
	$\begin{aligned} & =1-0.00097656-0.014648-0.087891 \\ & \quad=0.896(459 / 512) \end{aligned}$	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
		3	

Question	Answer	Marks	Guidance
3(ii)	Method 1		
	$\begin{aligned} & \mathrm{P}(\mathrm{C}, \mathrm{C})+\mathrm{P}\left(\mathrm{C}, \mathrm{C}^{\prime}\right)+\mathrm{P}\left(\mathrm{C}^{\prime}, \mathrm{C}\right) \\ & 0.8 \times 0.9 \end{aligned}$	B1	Unsimplified prob completed on both days
	$0.8 \times 0.1+0.2 \times 0.6$	M1	Unsimplified prob $0.8 \times a+0.2 \times b, a=0.1$ or $0.4, b=0.6$ or 0.9
	$=0.92 \mathrm{oe}$	A1	Correct final answer
	Method 2		
	$1-\mathrm{P}\left(\mathrm{C}^{\prime}, \mathrm{C}^{\prime}\right)=1-0.2 \times 0.4$	B1	Unsimplified prob completed on no days
		M1	$1-0.2 \times a, a=0.1$ or 0.4 allow unsimplified
	$=0.92$	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$5!\times 6!\times 2$	$\mathbf{B 1}$	$\mathrm{k} \times 5!$ or $m \times 6!(k, m$ integer, $k, m \geqslant 1)$, no inappropriate addition
		172800	$\mathbf{B 1}$
		$n \times 5!\times 6!(n$ integer, $n \geqslant 1)$, no inappropriate addition	
		$\mathbf{B 1}$	Correct final answer, isw rounding (www scores B3) All marks based on their final answer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	... G ... G ... G ... G ... G ... G ... No. ways girls placed \times No. ways boys placed in gaps $=$	M1	$k \times 6$! or $k \times{ }^{7} \mathrm{P}_{5}(k$ is an integer, $k \geqslant 1)$ no inappropriate add. $\left({ }^{7} \mathrm{P}_{5} \equiv 7 \times 6 \times 5 \times 4 \times 3\right.$ or $\left.{ }^{7} \mathrm{C}_{5} \times 5!\right)$
	$6!\times{ }^{7} \mathrm{P}_{5}$	M1	Correct unsimplified expression
	$=1814400$	A1	Correct exact final answer (ignore subsequent rounding)
		3	

Question	Answer	Marks	Guidance
5(i)	$\frac{15.5 \times 12+910}{12+20}$	M1	Unsimplified total age divided by their total members (not 12, 20 or 2)
	$=34.25$ or $341 / 4$ (years)	A1	Correct exact answer (isw rounding), oe (34 years 3 months)
		2	
5(ii)	Considering Juniors: $\text { variance }=\frac{\sum x^{2}}{12}-15.5^{2}=1.2^{2}$	M1	$\frac{\sum x^{2}}{k}-15.5^{2}=1.2^{2}, k=12 \text { or } 20$
	$\sum x^{2}=2900.28$	A1	Answer wrt 2900
	Considering whole group: $\begin{aligned} & \sum z^{2}=\sum x^{2}+\sum y^{2}=2900.28+42850=45750 \\ & \text { Variance }=\frac{\sum z^{2}}{32}-\mu^{2}=\frac{\text { their } 45750}{12+20}-(\text { their } 34.25)^{2} \\ &(=256.63) \end{aligned}$	M1	Their $45750>42850\left(\right.$ not 85700 or rounding to $\left.1.8 \times 10^{9}\right)$ in correct variance or std deviation formula (Σx^{2} and addition may not be seen)
	$\mathrm{sd}=16.0(2)$	A1	Correct final answer, condone 16.03
		4	

Question	Answer	Marks	Guidance
6(iii)	Method 1		
	$\mathrm{P}(X$ non-zero $)=9 / 12$	B1ft	If Binomial distribution used $0 / 3$ $\mathrm{P}(X$ non-zero $) \mathrm{ft}$ from their pdf table, $\Sigma p=1$ oe
	$\mathrm{P}(X=1 \mid X \text { non-zero })=\frac{\mathrm{P}(X=1 \cap X \text { non }- \text { zero })}{\mathrm{P}(X \text { non }- \text { zero })}=\frac{3 / 12}{9 / 12}$	M1	Their $\mathrm{P}(X=1) /$ their $\mathrm{P}(X$ non-zero) from their pdf table oe
	$=1 / 3$ oe	A1	Correct final answer www
	Method 2		
	$\mathrm{P}(X=1 \mid X \text { non-zero })=\frac{\text { Number of outcomes }=1}{\text { Number of non }- \text { zero outcomes }}$	B1ft	Number of non-zero outcomes (expect 9) ft from their outcome table or pdf table numerators oe
		M1	$a / b, a=$ their 3 from their outcome table or pdf table numerators, $b=$ their 9 (not 12)
	$=\frac{3}{9}=\frac{1}{3} \text { oe }$	A1	Correct final answer www
		3	

Question	Answer	Marks	Guidance
7(a)(i)	$\mathrm{P}(X<4)=\mathrm{P}\left(Z<\frac{4-3.24}{0.96}\right)$	M1	\pm Standardisation formula, no cc, no sq rt, no square
	$=\mathrm{P}(Z<0.7917)=0.7858$	A1	$0.7855<\mathrm{p} \leqslant 0.7858$ or $\mathrm{p}=0.786$ Cao (implies M1A1 awarded), may be seen used in calculation
	their $0.7858 \times 365=286$ (or 287)	B1ft	Their probability $\times 365$ provided 4 sf probability seen. FT answer rounded or truncated to nearest integer. No approximation notation used.
		3	
7(a)(ii)	$\mathrm{P}(X<\mathrm{k})=\mathrm{P}\left(Z<\frac{k-3.24}{0.96}\right)=0.8$	B1	$(\mathrm{z}=) \pm 0.842$ seen
	$\frac{k-3.24}{0.96}=0.842$	M1	$z= \pm \frac{k-3.24}{0.96}$, allow cc, sq rt or square equated to a z-value ($0.7881,0.2119,0.158,0.8,0.2$ etc. are not acceptable)
	$k=4.05$	A1	Correct final answer, www
		3	
7(a)(iii)	$\mathrm{P}(-1.5<Z<1.5)=$	M1	$\Phi(z=1.5)$ or $\Phi(z=-1.5)$ seen used or $p=0.9332$ seen
	$\begin{aligned} & \Phi(1.5)-\Phi(-1.5)=2 \Phi(1.5)-1 \\ & =2 \times 0.9332-1 \mathrm{oe} \end{aligned}$	M1	Correct final area expression using their probabilities
	$=0.866$	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
7(b)	$\begin{aligned} \mathrm{P}(Y>0)=\mathrm{P}\left(Z>\frac{0-\mu}{\sigma}\right) \equiv & \mathrm{P}\left(Z>\frac{0-\mu}{3 \mu / 4}\right) \text { or } \\ & \mathrm{P}\left(Z>\frac{0-\left(\frac{4 \sigma}{3}\right)}{\sigma}\right) \end{aligned}$	M1	\pm Standardisation attempt in terms of one variable no sq rt or square, condone ± 0.5 as cc
	$=\mathrm{P}(Z>-4 / 3)$	A1	Correct unsimplified standardisation, no variables
	$=0.909$	A1	Correct final answer
		3	

Alternative methods for Question 1(ii)

Method 3

$P\left(S, S^{\prime}\right)=\frac{4}{11} \times \frac{7}{10}=\frac{28}{110}$
$P\left(P, P^{\prime}\right)=\frac{2}{11} \times \frac{9}{10}=\frac{18}{110}$
$P\left(I, I^{\prime}\right)=\frac{4}{11} \times \frac{7}{10}=\frac{28}{110}$
$P\left(M, M^{\prime}\right)=\frac{1}{11} \times \frac{10}{10}=\frac{10}{110}$
Total $=\frac{84}{110}$
$P($ Same $)=1-\frac{84}{110}=\frac{26}{110}$
B1 one of products correct
M1 1 - sum of probabilities from 4 appropriate scenarios
A1 Correct final answer

Method 4

$\mathrm{PP}^{\prime}=\frac{2 \times 9}{2}=9$
$\mathrm{SS}^{\prime}=\frac{4 \times 7}{2}=14$
$\mathrm{II}^{\prime}=\frac{4 \times 7}{2}=14$
$\mathrm{MM}^{\prime}=\frac{1 \times 10}{2}=5$
Total number of ways $=\frac{10 \times 11}{2}=55$
Number of ways of letters repeating $=55-(9+14+14+5)=13$
$\mathrm{P}($ Same $)=\frac{13}{55}$
B1 ${ }^{11} \mathrm{C}_{2}$ seen as the denominator of fraction (no extra terms) allow unsimplified
M1 1 - sum of 4 appropriate scenarios
A1 Correct final answer

